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Summary

This report describes the results obtained in the course of the entire project, which was
initially funded through a NASA AISRP grant NAS5-31348, and through USRA contract
# 5555-32.

In the early phases of the project, we developed a user-friendly package for multi-
variate statistical analysis of small and moderate-size data sets, called STATPROG. The
package was tested extensively on a number of real scientific applications, and has produced
real, published results.

Subsequently, the bulk of the effort was in the development and testing of a major
package used to process and analyse the data from the digital version of the Second Palomar
Sky Survey (some 3 Terabytes of raw pixel information). This system, called SKICAT,
incorporates the latest in machine learning and expert systems software technology, in order
to classify the detected objects objectively and uniformly, and facilitate handling of the
enormous data sets from digital sky surveys, and other sources. The system was developed
as a major collaborative effort between our group, and the JPL Artificial Intelligence group.

The SKICAT system provides a powerful, integrated environment for the manipula-
tion and scientific investigation of catalogs from virtually any source. The system serves
three principal functions: image catalog construction, catalog management, and catalog
analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT
automates the process of classifying objects within CCD and digitized plate images. To
exploit these catalogs, the system also provides tools to merge them into a large, complex
database which may be easily queried and modified when new data, or better methods of
calibrating or classifying the old, become available. The most innovative feature of SKI-
CAT is the facility it provides to experiment with and apply the latest in machine learning
technology to the tasks of catalog construction and analysis. The very same classification
learning software used to create the classifiers in SKICAT’s automated image cataloging
tools are available for use on any SKICAT data set, or even data from external sources.
SKICAT provides a unique environment for implementing these tools for any number of
future scientific purposes.

Initial scientific verification and performance tests have been made using galaxy
counts and measurements of galaxy clustering from small subsets of the survey data, and
a search for very high redshift quasars. These tests helped uncover and fix several mi-
nor problems, and excercized the software in a real-life situation. All of the tests were
successful, and produced new and interesting scientific results.

Attachments to this report give detailed accounts of the technical aspects of the
SKICAT system, and of some of the scientific results achieved to date.



1. Introduction. The goals of the project

This report describes the technical and scientific results obtained in the course of the
project which was initially funded through a NASA AISRP program grant, and then, in
the last year of the total period of performance, through an USRA contract. Since there
was no distinct boundary within the total period of performance, this report covers the
entire project, and not just the work done under the USRA contract.

A substantial portion of the work was done as a collaborative effort between our group
at Caltech, funded through this program and other sources, and the Artificial Intelligence
group at the JPL (funded separately). While the Caltech contributions were substantial,
our funding alone could not have accomplished the work and the results described here.
Further cost sharing was through the P.I’s NSF Presidential Young Investigator award,
which covered many of the scientific verification tests and applications, and from Palomar
Observatory, which paid one half of the salary of the postdoctoral fellow (Dr. de Carvalho)
who worked on this project for the past year or so.

The motivation and the goals behind our work were to confront the problem of ex-
tracting interesting scientific results from vast amounts of data, with a minimum of loss
and waste, in our fields of interest, viz., astronomy and space science. Raw data, no mat-
ter how expensively obtained, are no good without an effective ability to process them
quickly and thoroughly, and to refine the essence of scientific knowledge from them. We
approached the problem with a belief that many of the advanced tools needed for this task
already exist in the various fields of computer science and statistics. Our practical goal
was to bridge the gap between the disciplines, and introduce the modern data management
and analysis software technologies into astronomy and astrophysics.

Our philosophy throughout has been to seek existing, applicable software and algo-
rithms from the public domain wherever possible, and minimize independent programming
effort (except for the interfaces, etc.). We did not want to reinvent any wheels, but to iden-
tify the most promising tools from the vast amount of scattered software, available in the
open scientific literature or commercially, and to assemble some particularly useful pieces
into working scientific packages. We verified their effectiveness and improved their design
by attacking some real-life scientific problems. In the end, we provided packaged tools
for working astronomers, who have to deal with large amounts of data, and extract a
maximum science from it.

Our work proceeded in two stages: First, we developed a simple, but very effective
and scientifically productive multivariate statistical analysis package (STATPROG). We
utilized as much as possible existing or published routines and algorithms, with some
programming and development of our own, and after an extensive comparisons, testing,
and evaluation, put together a user-friendly, science-ready package. The package was
scientifically validated through some real advances and discoveries, published in major
astronomy journals, as documented in a number of references listed in the Bibliography.
The work on STATPROG was done entirely during the NASA/AISRP funding stage of
this project, before the USRA contract.



We then embarked on a larger and more ambitious effort, which constituted the bulk
of our work, and which was the subject of N. Weir’s Ph.D. thesis at Caltech. We were
very fortunate in this endeavor to start an extremely productive and mutually beneficial
collaboration with the JPL Al group, and in particular Drs. R. Doyle and U. Fayyad.

Our initial motivation there was to facilitate the scientific exploitation of the digital
scans of the nearly 3000 photographic plates comprising the Second Palomar Observatory
Sky Survey (POSS-II). The scans will ultimately add up to about 3 Terabytes of pixel data,
an unprecedented amount of image information in the optical/IR astronomy. These scans
will be the highest quality set of images covering the entire northern sky produced to date,
and will almost certainly not be surpassed for at least a decade. Their potential scientific
value is enormous, if only the relevant information can be extracted quickly and efficiently.
We estimate that ultimately > 5 x 107 galaxies and = 2 x 10° stars should be detected
on the POSS-II plates, reaching down to the 22nd B magnitude. As an illustration, this
exceeds the entire IRAS survey by three orders of magnitude in the number of objects
alone, and with much more information per object!

To provide for the construction, classification, and analysis of object catalogs from
this three Terabyte imagery data set, we developed a software system we call the Sky Image
Cataloging and Analysis Tool (SKICAT). The system incorporates the latest techniques
from the fields of machine learning and artificial intelligence, and is probably one of the
first major applications of such modern software technology to astronomy. The system
consists of roughly three layers of information processing and analysis. The first one,
which generates catalogs of automatically classified objects from the raw plate scans and
CCD calibration images, and the second one, where image catalogs are matched and
manipulated, have been covered in this project. The third layer, in which a powerful
toolbox of modern data analysis algorithms is to be applied for scientific exploitation of
the catalogs was only started, and the work was temporarily suspended by the termination
of our funding. We are now pursuing alternative funding sources to continue this work.

SKICAT is a collection of new and borrowed, commercial and public domain, software
products which have been integrated for a common purpose. The current version of SKI-
CAT uses the Sybase commercial database package for catalog storage and management.
The system is thereby designed to manage a data base constantly growing and improv-
ing with time. With consistent command line and X-windows interfaces, the programs
collectively meet the following three demands of standard astronomical surveys: catalog
construction, management, and analysis. We have already demonstrated SKICAT’s suc-
cessful application to the digitized POSS-II. The system is already beginning to produce
real science, and we believe that it will become scientifically useful to the astronomical
community at large. Within it, data from a variety of different wavelengths could be
retrieved and cross-analyzed within the same powerful environment.

The lead part of this report gives a synthetic summary of the principal achievements.
Technical details and specific results are described extensively in the Attachments, which
represent papers submitted to refereed journals (two of them have been already practically
accepted for publication, as of this writing). The Attachments thus constitute the real



technical description of the results of this work. Additional results and interim reports can
be found in the papers listed in the Bibliography.

2. The STATPROG package for multivariate data analysis

The STATPROG package consists of a number of standalone programs, originally de-
veloped under the VMS operating system. The software is written entirely in the standard
Fortran 77, and has been ported to Unix Sparcstation platforms. We have systematically
explored the available software resources, combined them in a homogeneous system, and
tested them on real-life astronomical research problems. We have sampled some software
from widely available, public-domain sources: the Numerical Recipes library and its com-
panion volume (Press et al.), the monograph Multivariate Data Analysis by Murtagh and
Heck, the Gaussfit package, available from Dr. Jeffries at the Astronomy Department,
University of Texas at Austin, the MDRACE package, available from the Statistics De-
partment, University of California at Berkeley, and several routines published in various
astronomical journal papers. We also did some of our own coding of simple statistical
diagnostics and fitting routines. The sources of the codes and their evaluation will be
prepared in the later stages of this project.

The prototype package assembles a number of algorithms and routines, providing sim-
ple statistics, data handling, covariance analysis, Principal Component Analysis (PCA),
bivariate optimization, and several versions of least squares fitting routines has been de-
veloped, running under the VMS operating system. The data input is through simple,
standard ASCII files, combining any number of the leading header records, followed by
data records (one per data vector) listed in a free-format column-by-column format. The
package is very easy to use.

We performed the initial tests of the package on synthetic data, and then tackled
some real astrophysical problems: systematics of properties of elliptical galaxies and their
globular cluster systems. This excercise was both scientifically successful (with several
papers published or in press in major journals so far, plus a large number of conference
papers; see the Bibliography), and it also provided the valuable feedback, leading to a
number of small design modifications and improvements. Such tests “under the fire” are
the only way of providing a scientifically credible and useful software package.

The initial version of the package has been exported to several sites, both within
the U.S., and abroad (Europe, and Brazil), for an independent evaluation by other as-
tronomers. Their reactions were both useful and positive. We believe that STATPROG
will become a valuable tool for the astronomical and space science research community.

3. The SKICAT system: Background and motivation

The initial motivation for the Sky Image Cataloging and Analysis Tool ( SKICAT) was
to facilitate the scientific exploitation of the Palomar - STScl Digitized Sky Survey, based
on the scans of the nearly 3000 J, F, and N photographic plates comprising the Second
Palomar Observatory Sky Survey (POSS-II). The scans will ultimately add up to about 3
terabytes of pixel data. These scans will be the highest quality set of images covering the



entire northern sky produced to date, and will almost certainly not be surpassed for at
least a decade. Their potential scientific value is enormous, if only the relevant information
can be extracted quickly and efficiently. We estimate that ultimately > 5 x 107 galaxies
and > 5 x 10® stars should be detected on the POSS-II plates, reaching down to the 22nd
B magnitude.

To provide for the construction, classification, and analysis of object catalogs from
this three Terabyte imagery data set, the JPL Artificial Intelligence Group and Caltech As-
tronomy developed a software system we call SKICAT. The system incorporates the latest
techniques from the fields of machine learning and artificial intelligence, and is probably
one of the first major applications of such modern software technology to astronomy.

The system is described in some detail in the Attachment A to this report. Only a
brief description will be given here. The SKICAT system is envisioned to consist of three
layers of information processing and analysis. The first one, which generates catalogs of
automatically classified objects from the raw plate scans and CCD calibration images is
now complete. The second one, where image catalogs are matched and manipulated is
now practically complete, with further refinements and capabilities being added to it on
a continuous basis. The third layer, in which a powerful toolbox of modern data analysis
algorithms is to be applied for scientific exploitation of the catalogs, was only partly
completed, due to the termination of our funding. We are now in the process of seeking
resources to complete this stage, and will do so as the future funding allows.

Put briefly, SKICAT is a collection of new and borrowed, commercial and public do-
main, software products which have been integrated for a common purpose. With consis-
tent command line and X-windows interfaces, the programs collectively meet the following
three demands of standard astronomical surveys: catalog construction, management, and
analysis.

We first wrote and integrated the tools necessary for constructing object catalogs from
the plate and CCD sequence images. Next, we applied state-of-the-art machine learning
technology to develop an object classification method which is accurate at levels a full
magnitude fainter than in previous automated Schmidt-based photographic sky surveys.
As a result, we obtained more than twice the density of classified galaxies in our catalogs
relative to previous ones. We next developed the machinery for matching multiple plate
and CCD catalogs into a single “matched catalog”, as well as a mechanism for performing
sophisticated queries thereof.

No existing software, such as FOCAS or DAOPHOT (two commonly used astronom-
ical software packages), was able to meet the complex demands of cataloging the Gigabyte
images comprising a single plate scan, much less manage and match the few thousand plate
catalogs that will comprise the whole POSS-II. Given that we had to design these man-
agement tools from scratch, we chose to generalize SKICAT to eventually accommodate
astronomical catalogs from sources other than plates or CCDs (e.g., IRAS or ROSAT)
with a modest amount of programming effort. Thereby data from a variety of different
wavelengths could be retrieved and cross-analyzed within the same powerful environment.

The current version of SKICAT uses the Sybase commercial database package for
catalog storage and management. To use a catalog within SKICAT, it must be registered
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in the SKICAT system tables, where a complete description and history of every catalog
loaded to date is maintained. Catalog revisions, that might result from deriving new and
improved plate astrometric solutions or photometric corrections, are also logged. The
system is thereby designed to manage a data base constantly growing and improving with
time.

To maintain a reliable inventory, catalogs must be read from and written to external
storage using a SKICAT interface. Catalogs may be matched, object by object, with other
catalogs to form a matched catalog. This catalog contains independent entries for every
measurement of every object detected in the constituent catalogs. The matched catalog
may be queried using a sophisticated filtering and output mechanism to generate a so-
called object catalog, containing just a single entry per matched object. For example, a
user may requests all objects from a large sky region covered by multiple plates of the
same or different passbands, specifying exactly which object attributes to report and from
which source. Such queries may generate either additional Sybase objects tables or ASCII
files, thus maintaining a considerable flexibility for different applications.

One of the most novel aspects of SKICAT is the facility to query overlap regions in the
matched catalog and to dynamically update the constituent catalogs (their photometry,
astrometry, classifications, etc.) in light of these results. The query tool may in turn be
used to create a static, distributable data product from the current set of matched plate
catalogs. However, the essential feature of SKICAT is that it maintains a “living,” growing
data set, instead of a data archive fixed for all time.

The third major component of SKICAT as envisioned, is a set of programs for sur-
vey data exploration and analysis. This includes the STATPROG library of multivariate
statistical analysis routines we have developed earlier as part of this project, and much
more. For example, we started to incorporate the neural networks and the GID3* /OBtree
decision tree induction software used to produce the plate object classifier implemented
in the AutoPlate script of SKICAT. We also started the work introducing unsupervised
Bayesian classification algorithms, such as AUTOCLASS, for a more sophisticated and
model-independent exploration of large data spaces. These programs might later be used
to train and produce classifiers for scientific uses of the digitized POSS-1I1, or any other
catalogs, that we had never anticipated.

4. The star-galaxy classification problem

A key technical and scientific problem in this kind of work is the ob jective star-galaxy
classification. The accuracy and reliability of object classifications really determines the
scientifically useful depth of a sky survey, regardless of the flux detection limits achieved.
A paper describing our results and the work on the star-galaxy classification problem is
given in the Attachment B to this report, and it gives all the details.

Briefly, in our early work on this problem, we experimented with the template-fitting
approach as used in the FOCAS package, and Neural Net (NN) classifiers. We have applied
this software to the star-selection classification problem with great success, achieving a bet-
ter than 95% success rate on test data using a set of nine input attributes after training on



only a few hundred objects. We developed code which implements a multi-layer percep-
tron artificial NN model for non-linear regression and classification. The software provides
for an arbitrary number of layers and nodes at the input, output, and hidden level, as
well as a broad choice of linear and non-linear activation functions. A variety of optimiza-
tion methods are available, including gradient descent-based standard back-propagation
and highly efficient conjugate gradient and variable metric methods. The latter reduce
network training time by more than an order of magnitude over the traditional method.
We also did some research into the possibility of incorporating formal error estimates in
the form of a covariance matrix associated with the network outputs for any given input,
which is a novelty in the field of Neural Nets.

We then tried a different approach to the problem of automatic objective classifica-
tion, using Decision Tree algorithms (ID3, GID3*). We applied the GID3* decision tree
algorithm developed by Fayyad and a neural network to the task of selecting a set of stars
from a relatively bright sample of objects. These are subsequently used to generate the
point spread function, which is used in a template matching procedure for constructing
more accurate classification attributes. Our tests indicated that both approaches worked
comparably well, achieving > 95% success rates. We, therefore, chose to stick with the
GID3* method, as it produces a readily comprehensible set of classification rules, unlike
the neural network. Our tests on the actual PDS data indicated that we can perform
star selection with < 1% error rate. When the final set of attributes produced by tem-
plate matching are included, we are able to perform star/galaxy Jartifact classification with
> 95% accuracy down to ~ 20™ in the B band, and > 90% accuracy down to By = 21™,
Thus, Decision Tree algorithms have been used as the principal object classification tools
within SKICAT. More details are given in the Attachment B.

Finally, we started explorations of unsupervised learning algorithms such as AUTO-
CLASS, to the analysis of object catalogs derived from the digitized POSS-II. Our goal
was to explore the of the power of unsupervised learning techniques to classify objects
meaningfully and perhaps to discover previously unrecognized object categories in digital
sky surveys. Our primary finding is that AUTOCLASS was able to form several sensi-
ble categories from a few simple attributes of the object images, separating the data into
four recognizable and astronomically meaningful classes: stars, galaxies with bright central
cores, galaxies without bright cores, and stars with a visible “fuzz” around them. In an
independent experiment we found out that the two types of galaxies have distinct color
distributions (the more concentrated class being redder, as indeed expected if they are
predominantly early Hubble types), although no color information was given to the pro-
gram! This illustrates the power of unsupervised classification techniques to discriminate
between astronomically distinct types of objects on the basis of data alone. We believe
that the application of such algorithms to large-scale astronomical sky surveys can aid in
cataloguing the detected objects, and may even have the potential to discover new cate-
gories of objects. Thus, we believe that this remains a very interesting and promising area
for the future work.



5. The SKICAT system: Description and current status

The single-plate reduction is accomplished by a parent unix script which calls sub-
ordinate routines for reading in and processing the plate image. The plate is broken into
a set of 13 by 13 overlapping footprint images, which are analysed separately, and then
combined in the master plate catalog (the full plate scans are over 23,000 by 23,000 pixels,
or about 1 Gigabyte, which is too large to handle efficiently).

One of the most novel aspects of SKICAT is the facility to query overlap regions in the
matched catalog and to dynamically update the constituent catalogs (their photometry,
astrometry, classifications, etc.) in light of these results. The query tool may in turn be
used to create a static, distributable data product from the current set of matched plate
catalogs. However, the essential feature of SKICAT is that it maintains a “living,” growing
data set, instead of a data archive fixed for all time. This is one of the real novelties in
our work, never before attempted in the astronomical data processing at large, especially
in sky surveys.

We started exploring the unsupervised clustering and objective automatic classifica-
tion techniques. For example, we investigated AUTOCLASS unsupervised classification
software developed at NASA Ames, and explored other Bayesian inference and cluster anal-
ysis tools. These software tools may be capable of independent or cooperative discoveries,
and their application may greatly enhance the productivity of practicing scientists.

Effectively, by crossing the wavelength boundaries and creating a synergy of space-
based and ground-based data from surveys covering large fractions of the entire sky, we are
approaching a new level of complexity in astronomical source catalogs. Furthermore, the
catalogs we generate will be constantly changing, growing in size and scope, and improving
in time, as new and better data come in. This is an entirely new concept of an astronomical
data catalog: a downloadable, growing data base with which one interacts using semi-
intelligent software robots (knowbots); no more dusty, immutable printed volumes! The
tools we developed are generic to this concept of hypercatalogs. There is a fusion of the
data and the information tools, and it is that new ground, at least within astronomy.

6. The initial scientific verification tests

While the principal thrust of this work was technical and software technology ori-
ented, the validity of the data products and the software systems which generate them,
as well as the power of the sophisticated data analysis tools (such as many functions
of SKICAT) can be really verified only through an application to a real scientific prob-
lem. This testing on the fire line is an indispensable part of the system shakedown. We
thus attacked, in a limited way, several important scientific problems using some of the
preliminary catalogs generated by SKICAT. These are only initial, but still scientifically
substantial experiments; they pave the way for the future pipeline processing and scientific
exploration of digitized POSS-II, which should be funded separately elsewhere. Here we
used them as test cases to excercize the system. Indeed, they helped us uncover and fix
numerous “features” in the system.



One basic test of our galaxy photometry, parameter definition and measurement pro-
cedures, and star-galaxy classification, are galaxy counts as a function of magnitude. This
is one of the traditional tests of cosmology (pioneered by Hubble), and it provides us with
a sensitive test of internal consistency and accuracy. A detailed paper dealing with these
tests is presented in the Attachment C to this report. Briefly, we have demonstrated an
unprecedented level of accuracy and internal consistency relative to all previous studies
using a comparable sky survey material. Since the raw data quality has not changed from
the previous studies, our improvements are clearly due to the superior software technology
now implemented within the SKICAT system.

A related test are studies of the large-scale structure using two-point correlation
functions for the galaxies. The preliminary results here are equally encouraging. We
presented them as a conference paper, and we will turn them into a journal paper shortly.

Another project which provides a stringent test of our star-galaxy classification and
catalog matching procedures is the search for high-redshift (z > 4) quasars, using peculiar
colors. The trick here is to select on the average one z > 4 quasar per approximately 10°
foreground stellar images. The first results of this work are starting to come in, and the
first luminous z > 4 quasar selected using this Al-based software technology from the sky
survey scans has just been discovered at Palomar about two weeks ago! It is the first one
of many more to come. This work is a part of Julia Smith’s Ph.D. thesis at Caltech.

The accuracy of our star-galaxy classifications is also being tested through spec-
troscopy, a completely independent technique. This has been done by ourselves during
our quasar search (virtually all objects classified as being stellar indeed turned out to be
stellar), and by our colleagues who are conducting a massive redshift survey at Palomar:
they find that the accuracy of our star-galaxy classifications is at least a factor of five
higher than in the previous surveys using a comparable plate material. This work has
been funded separately by the NSF, but it provides a valuable verification of our efforts.

Finally, we have started an exploration of the huge data bases resulting from the sky
survey to discover and define objective catalogs of groups and clusters of galaxies. This
work is also being funded separately, and it will provide valuable feedback to further refine
and enhance our algorithms in the third layer of SKICAT.

We thus conclude that our software and algorithms have passed the initial scientific
verification tests with flying colors. They are now starting to produce real science, and are
being used by several independent groups for different projects.

7. Prospects for the future work

On the scale of a couple of years from now, the storage technologies may be good
enough to revisit the cataloguing and classification problem in a whole new light: iterative
or feedback catalog generation. The current practice (including SKICAT) is to measure
the images once in a predetermined way, and derive the object parameters and classi-
fications from these measurements (e.g., moments of the light distribution, etc.). Once
measured, pixels are not revisited, since the image data volume is too bulky to keep on
line. If history is any guide, this technical limitation may change very quickly. It would
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then be possible to have intelligent object-finding and classifier algorithms automatically
redefine the measurement process, i.e., go back to the pixels and measure some new object
parameters if deemed necessary. This may be naturally accomplished using the so-called
genetic algorithms, which are capable of evolving and self-improvement. We are not aware
of any application of such tools in astronomy so far, yet this has a natural appeal. It would
represent a truly novel approach to astronomical catalog generation.

"The basic mode of our work has been to search for existing tools and software tech-
nologies on the cutting edge of applied statistics, machine intelligence and related fields,
and apply them to specific and very pressing problems of astronomical data analysis. In
this, we have already developed a successful set of tools, first STATPROG, and then, in col-
laboration with the JPL AI group, SKICAT. We thus hope to continue our role as a conduit
between the communities of observational astronomers on the one side, and the applied
software technology and computer science experts on the other. We are well positioned
to do so, and we have a considerable and an ever growing credibility in the astronomical
community. For example, astronomers involved with the planned Sloan Digital Sky Sur-
vey, astronomers at STScl involved with the HST Guide Star Catalogs, astronomers at
IPAC and JPL involved in planning of the Two Micron All-Sky Survey, and some U.S.
astronomers involved with the Rosat sky survey, expressed an enthusiastic interest in our
work so far, and are keen to import our software and methodology. We welcome that as an
additional source of an external scientific evaluation of our products. With the anticipated
scientific results we hope to achieve based on these enabling information technologies, as-
tronomers and space scientists will pay a serious attention to this interface of astronomy
and computer science, and we hope to stimulate other groups to start similar efforts and
collaborations.

Whereas we have approached this work with a specific application in mind, viz., the
3 Terabytes of digitized POSS-II burning holes in our pockets, we have understood from
the start the universality of the problem, and of the proposed technical solutions we are
trying to develop. These techniques are clearly and directly applicable to a wide variety
of astronomical imaging applications, especially sky surveys of any sort: IRAS, Rosat,
and those from the anticipated future missions. There are also potential ground-based
applications of interest to NASA, e.g., the searches for Earth-crossing asteroids, where
a substantial portion of the sky would be covered a few times per night, every night;
our software can be almost directly ported to that problem. In addition to the efficient
analysis of vast amounts of new data, these techniques can be also used to explore the
existing data archives, and have a potential of revolutionizing the archival research (e.g.,
the HST archive, reanalysis of IRAS or HEAO-B data, etc.). This great universality
should attract a very broad constituency of science users, probably with a multitude of
applications which have never occurred to us...

It has thus been our long-term ambition from the onset of this effort to develop
modern software tools for astronomy and space science of the turn of the century, and
lay down the information processing infrastructure for the imminent data flood which
is upon us. We thing we choose the exactly right path, in establishing an excellent and
productive working relations with experts from the NASA-sponsored Artificial Intelligence
community, and we hope to broaden this synergy on both sides. We see this as a first stage
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of a larger technology transfer process, in our case from the applied computer science to
a basic science of astronomy. Perhaps there is an even more fundamental undercurrent
here: Information is the steam of the second industrial revolution, and here we are trying
to make some good engines. If we are successful, others might be stimulated to try, and
this may be a model of the growth process for the postindustrial economy.

8. Software distribution and and dissemination of results

We have received a very substantial interest from the astronomical community, upon
the presentations of our work at various professional meetings. In particular, groups work-
ing on the Sloan Digital Sky Survey, the Two Micron All-Sky Survey, the HST Guide Star
Catalog, a Center for Astrophysics group doing a deep redshift survey, a University of
California consortium planning an ultra-deep survey with the Keck telescope, a JPL group
planning a survey for the Earth-crossing asteroids, and numerous others. There is also an
international component, from the COSMOS plate scanning machine group in Scotland,
the ESO/ESTEC group in Germany, two groups in France, and a group in Brazil. There
is thus a considerable and substantial interest in the astronomy and space science commu-
nities, both for the SKICAT system itself, and for the data products it is now generating.
We have also seen a lot of interest from the astronomical software specialist community,
at the various ADASS and AAS conferences, and other gatherings.

Catalog management aspects of SIKICAT could be used directly for many data archive
systems, a subject which is of a considerable and growing interest in the astronomy com-
munity.

A modified version of SKICAT, with a special data interface, has been used success-
fully by our collaborators at JPL and a group of planetary scientists, to search for and
catalog millions of small volcanos on Venus, from the Magellan radar synthetic images.
This illustrates very directly the broad applicability of our software and methodology.

All of the code is adequately documented internally. All of it is the standard C and
Fortran, and in unix shell script language.

While so far we have been communicating with the interested groups on a case by
case basis, we will establish a more systematic and orderly distribution of the software
and object catalogs. The software itself (except, of course, for the commercial parts for
which a license has to be purchased, such as Sybase) will be deposited in at least two
NASA software distribution sites, along with the proper documentation. Several useful
documents exist or are being completed now, and will be deposited in the form of LATEX
and PostScript files:

o SKICAT Users Manual

e SKICAT Installation Guide

e SKICAT Plate and CCD Processing Reference
o SKICAT Plate and CCD Processing Cookbook
o SKICAT Database Reference



The papers describing the system and the relevant parts of the methodology are now
submitted to the professional journals (see the Attachments); other papers in conference
proceedings also cover some specific aspects of the work. They constitute an extended,
and obviously fully public, form of documentation. We plan to publish further results as
they are produced.

In addition to the specific software distribution, we are now looking into the distri-
bution of catalogs via Internet and WWW. In order to make these vast amounts of data
easily accessible, we will have to make the software available through the same venue. The
network fashions change rapidly, and the exact mechanism by which we will accomplish
this is still under consideration. This may well have a substantial educational component.
Presumably the production and distribution of the catalogs will be funded separately, and
it does not come under the scope of the present contract.

We emphasize that we have a substantial vested interest in seeing that our work is
used by the community. We will thus make every effort to make it easily accessible.
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Abstract

We describe the design and implementation of a software system for producing, manag-
ing, and analyzing catalogs from the digital scans of the Second Palomar Observatory Sky
Survey. The system (SKICAT) integrates new and existing packages for performing the
full sequence of tasks from raw pixel processing, to object classification, to the match-
ing of multiple, overlapping Schmidt plates and CCD calibration frames. We describe
the relevant details of constructing SKICAT plate, CCD, matched, and object catalogs.
Plate and CCD catalogs are generated from images, while the latter are derived from ex-
isting catalogs. A pair of programs complete the majority of plate and CCD processing
in an automated, pipeline fashion, with the user required to execute a minimal number
of pre- and post-processing procedures. Some of the most critical aspects of the image
catalog construction process are the steps required for assuring consistent detection and
attribute measurement across different plates, particularly measurements of magnitudes
and attributes used for classification. We apply a modified version of FOCAS for the de-
tection and photometry, and new software for matching catalogs on an object by object
basis. SKICAT employs modern machine learning techniques, such as decision trees, to
perform automatic star-galaxy-artifact classification with a > 90% accuracy down to ~ 1™
above the plate detection limit. The system also provides a variety of tools for interactively

querying and analyzing the resulting object catalogs.

keywords: image processing, database management, sky surveys



1 Introduction

The critical needs of observational astronomers have shifted from the exclusive realm of
instrumentation to include that of advanced data analysis. The rate and quality of the
data regularly produced by modern instruments frequently overwhelm the tools available to
exploit them. Because of this mismatch, astronomers are forced to develop new methods
and systems in order to make full use of modern astronomical data sets for producing
meaningful scientific results timely and efficiently.

One such data set, large even by modern day standards, is the Second Palomar Ob-
servatory Sky Survey (POSS-II, Reid et al. 1991). When complete, this photographic
northern-sky survey will cover 894 fields spaced 5° apart in three passbands: blue (IIla-J
+ GG 395), red (Illa-F + RG610), and near-infrared (IV-N + RG9). While the photo-
graphic survey is still under way, ST Scl and Caltech have begun a collaborative effort to
digitize the complete set of plates (Djorgovski et al. 1992; Lasker et al. 1992; Reid and
Djorgovski 1993). Both the photographic survey and the plate scanning are hoped to be
> 90% complete by the end of 1997. The resulting data set, the Palomar-STScl Digital
Sky Survey, will consist of ~ 3 TB of pixel data: ~ 1 GB/plate, with 1 arcsec pixels, 2
bytes/pixel, 203402 pixels/plate, for all survey fields in all three colors. In conjunction
with the plate survey, we are also conducting an intensive program of CCD calibrations
using the Palomar 60-inch telescope, using the Gunn-Thuan gri bands.

Given the enormous resources devoted to conducting such surveys, it is natural to pay
special attention to how, using present day technology, one can make most effective use
of the data once they are available. Attention to this detail, with an understanding of its
increasingly general applicability, prompted the work described in this paper.

Caltech Astronomy and the JPL Artificial Intelligence Group have been engaged in
a collaborative effort to integrate state-of-the-art computing methods for facilitating the
scientific exploitation of POSS-II, applying the latest and most effective technology for
performing any number of analyses of the data. The traditional means of extracting useful

information from imaging surveys is through the construction of ob ject catalogs. Thanks



to developments in the fields of pattern recognition and machine learning, it is now possible
to reliably construct such catalogs objectively and automatically with a higher degree of

accuracy than ever before.

2 Overall Design

The Sky Image Cataloging and Analysis System (SKICAT) was designed to facilitate the
creation and use of catalogs from large, overlapping imaging surveys, and in particular, the
scans of the Palomar-STScI Digital Sky Survey (DPOSS). The purposes of the software
utilities comprising SKICAT generally fall into three main categories: catalog construction,
catalog management, and catalog analysis. The relationship of these processes is illustrated
in Figure 1. For reducing scans of POSS-II, the first step in SKICAT processing is catalog
construction, which results in individual image catalogs. These, in turn, are registered
within the SKICAT database management system and matched, object by object, with
other catalogs to create a matched catalog of objects appearing in the survey. A matched
catalog, or any individual image catalogs, may subsequently be queried in a variety of
sophisticated ways to facilitate maintenance or analysis of the data.

While our interest in DPOSS provided the initial motivation for the development of
SKICAT, these tools are quite general and applicable to a broad range of data reduction and
analysis problems. For example, the catalog construction software could be rather easily
adapted to processing large-scale CCD or infrared imaging surveys. Likewise, the catalog
management and analysis tools are useful for integrating and making use of an even wider
variety of data sources (e.g., matching radio and x-ray sources with their counterparts
from optical surveys).

Currently, SKICAT provides utilities for generating catalogs from two types of images,
although it was designed to handle any number of types in the future. One image type
consists of a plate scan from the Palomar-ST ScI Digitized POSS-II (DPOSS) survey.
The other, a CCD image, is used for photometric calibration and training the star/galaxy
classifiers applied to DPOSS catalogs. Step-by-step instructions for processing plates and

CCDs from raw pixel into catalog form appear in the SKICAT Plate and CCD Processing



Cookbook (Weir et al. 1994a) and the SKICAT User’s Manual (Weir et al. 1994b).

In this first section, we provide an overview of the steps involved in catalog construction,
as well provide an introduction to the catalog management and analysis tasks supported
by SKICAT. In the section which follows, we provide a more detailed discussion of the
scientifically relevant details of the plate catalog construction processes. In the final section,

we describe how matched and object catalogs are constructed within SKICAT.
2.1 Catalog construction
2.1.1 Processing plates

The heart of SKICAT is a collection of programs for the quasi-automatic processing of
DPOSS plates from raw pixel to classified catalog form. Starting with a 1-GB digitized
plate exabyte tape from ST Scl, SKICAT provides the tools for transferring the pixel data
to SKICAT format, measuring the plate sky level and image boundaries, and determining
a photographic density-to-intensity relation. The user then initiates a script, AutoPlate,
which automates the process of cataloging the plate as a set of overlapping 20482 pixel
image ‘footprints’.

The three most critical elements of plate processing are detection, photometry, and
classification. By using the Faint Object Classification and Analysis System (FOCAS,
Jarvis and Tyson 1979; Valdes 1982a) for image detection and measurement, SKICAT
is able to reach close to the faintest reliable limits of the plate scans, i.e., down to a
typical equivalent limiting B magnitude of ~ 22™ for galaxies. In addition, by measuring
quasi-asymptotic rather than isophotal magnitudes, using local sky estimates from annuli
surrounding each object, and adapting the measurement thresholds within and across each
plate to adjust for differences in sky level, noise, and pixel-to-pixel correlation, we are able
to obtain very consistent photometry within and across plate boundaries. Details of our
methods for performing photometry and the resulting accuracy appear in Weir, Djorgovski,
and Fayyad (1994).

For classification, SKICAT benefits from the application of recent developments in

machine learning. In particular, it utilizes the GID3* and O-Btree decision tree induction



software (Fayyad 1991; Fayyad and Irani 1992; Fayyad and Irani 1993), together with
the Ruler system (Fayyad, Weir, and Djorgovski 1993) for combining multiple trees into
a robust collection of classification rules. These algorithms work by using measurements
of a training set of classified objects and inferring an efficient set of rules for accurately
classifying each example. The rules are simply conjunctions of multiple “if...then..” clauses,
which condition upon any of eight different object parameters to determine an object’s
classification. The real advancement in using this type of classifier relative to those used
in most large-scale surveys to date is twofold: first, we are able to condition upon a larger
and more diverse set of attributes; second, we allow the computer to decide what are the
optimal number and form of the rules. Additionally, this technique readily generalizes
to other, more difficult forms of classification, such as distinguishing galaxies by their
morphology.

We have created separate sets of classification rules for objects from J and F band sur-
vey plates. We used CCD calibration data, which generally have superior image quality, to
construct the training sets used to train the plate object classifiers. Classifications derived
from the CCD data, more reliable than “by eye” estimates from the plates themselves,
were matched to plate measurements to form the training sets. The measurements used to
perform classification are a set of robust, renormalized object parameters that we found to
be distributed in a stable fashion within and across plates. By training the algorithms to
classify based on these attributes, we were able to nearly completely remove the effect of
PSF variation across a given plate, or even between different plates. Average accuracy of
star-galaxy classifications as a function of magnitude may be determined from tests using
independent CCD-classified plate data. In both the J and F bands, we found the accuracy
to drop below ~ 90% at about the same equivalent magnitude level, B ~ 21.0™. This is
~ 1™ above the plate detection limits, and nearly 1™ better than what was achieved in
the past with similar data. This increase in depth effectively doubles the number of galax-
ies available for scientific analysis, relative to the previous automated Schmidt surveys.

The details of our classification methods and results are presented in Weir, Fayyad, and

Djorgovski (1994).



Plate X,Y to RA,Dec assignment, like object classification, is automatically performed
in the final stages of catalog construction. Currently, the astrometric transformation is
performed based on the astrometric solutions provided by ST Scl as part of their plate
scanning operation, but improved solutions are easily implemented. As both astrometric
assignment and final object classification rely only upon existing catalog measurements,
not raw pixel data, they may be easily repeated at later times using a different set of clas-
sification rules or improved astrometric solution coefficients. SKICAT provides database
manipulation tools that facilitate the continuous refinement of catalogs as better calibra-

tion, or even entirely new algorithms, become available.

2.1.2 Processing CCDs

CCD catalogs are constructed using most of the same tools as are applied to plate data.
A script called AutoCCD, analogous to AutoPlate, is used to quasi-automatically process
an image from pixel into catalog form. The primary differences between plates and CCDs
are in the forms of pre- and post-processing that are applied. In particular, a whole
host of standard CCD calibration procedures (e.g., de-biasing, flat-fielding, photometric
calibration, etc.), far different from those for plates, must be followed before running
AutoCCD. In addition, we found FOCAS’s built-in classifier to provide very accurate
results on the CCDs down to the plate detection limit, which is our magnitude limit of
interest. We were, therefore, able to let FOCAS automatically classify each object, with
just a quick follow-up check by eye, producing excellent quality data without the need for
much human interaction or more sophisticated classification algorithms.

CCD data are used for two purposes in our work with DPOSS. First, they provide
“true” object classifications, at very faint levels, for our classifier training sets. Because
the CCD images are of higher resolution and signal to noise ratio (SNR) than digitized
plates, we are able to assign accurate classifications to objects whose morphology is not
reliably distinguishable, even by an expert, when looking at the plate image alone. Through
the machine learning process, the aim is to train the computer to consistently classify these

faint objects, thereby enabling it not just to mimic a human’s performance, but actually



improve upon it.

The second, most important, purpose for the CCD measurements is to provide pho-
tometric calibration for the plate catalogs. We use CCD exposures in the Gunn-Thuan
(Thuan and Gunn 1976) g, r, and ¢ bands to calibrate the Illa-J, Illa-F, and IV-N plate
data, respectively. These CCD bandpasses provide a reasonable match to the photographic
emulsion plus filter passbands. Details of how we perform our CCD photometry and the

level of accuracy we achieve appear in the paper Weir, Djorgovski, and Fayyad (1994).
2.2 Catalog management

Once the image catalogs are constructed, they must be registered within the SKICAT
database. Modifications and updated versions of the catalogs are maintained through
database management software and tracked by the SKICAT system. The structure of the
SKICAT database was specifically designed to facilitate the creation and classification of
image catalogs, comparison of object photometry and classifications, revision of object
measurements, and the construction of larger, matched catalogs.

For each plate or CCD image, the catalog construction scripts generate a header and
features table, together comprising what we term a SKICAT catalog. A detailed description
of the most commonly referenced SKICAT database terms appears in Appendix A. The
header table consists of columns of parameters used to guide the catalog construction
process, the name of the image from which the catalog was derived, the location of the
image on offline storage, comments, and other information necessary to identify the data
source and reconstruct the catalog from scratch if necessary. The features table contains
one row for each detected feature in the image. The columns represent the measured
attributes of each feature. Approximately 50 parameters per object are measured and
saved in the individual plate and CCD catalogs.

After the construction process, catalogs within SKICAT must be registered in the
SKICAT system tables, where a complete description and history of every catalog loaded
to date is maintained. Catalog revisions, that might result from deriving new and improved

plate astrometric solutions or photometric corrections, are also logged. Multiple versions of



each image catalog may exist, each reflecting a different processing history. The SKICAT
system tables also keep track of which catalogs are currently loaded on-line, or physically
loaded on disk. SKICAT provides tools for quickly and easily saving/loading catalogs off-
line/on-line. Only registered catalogs may be moved to/from off-line storage or matched
with other catalogs.

Multiple, overlapping catalogs can be matched into a special SKICAT data structure
called the matched catalog. The matched catalog consists of a matched features table and
a table of those catalogs comprising it. The matched features table contains independent
entries for every measurement of every object detected in the constituent catalogs. Because
of size and speed considerations, not every attribute may feasibly be saved within the
matched catalog, but a sufficiently small subset of parameters is generally more than
adequate for most uses of the data. Of course the saved catalogs themselves provide a
complete archive of the full list of parameters if they are ever needed. SKICAT allows
for multiple matched catalogs to be on-line at once, and they may be saved and loaded
to/from off-line storage and a new one created at any time.

The matched catalog may be queried using a sophisticated filtering and output tool to
generate a so-called object table, which contains just a single entry per matched object.
With this tool, the user may, for example, generate a distributable data product, such as
a galaxy list, from the current set of matched plate catalogs. The tool may also be used
to perform consistency checks within catalog overlap regions, or to perform specialized
scientific analysis over large survey regions. For example, a user may request a listing of
all stars within a well-defined section of sky covered by multiple J and F plates, specifying
exactly which object attributes to report (e.g., magnitude, RA, Dec, etc.) and from which
source (specific J plates, average of all F plates, etc.).

Catalogs may be easily altered using a procedure that allows arbitrary operations on
table columns. This user simply specifies the C code which describes the computation
for the column value as a function of any other column values, external data files, or
constants. The utility automatically generates the necessary code for transforming the

table and executes it. This utility is used in a number of contexts in the SKICAT system,



including the computation of right ascension and declination, as well as for applying the
classification rules. In the same way, catalogs may be re-calibrated or otherwise adjusted in
light of new or improved data. Such updates might include applying a field-effect correction
to a plate’s list of magnitude or performing new classifications using an improved rules set.

A catalog may also be modified by using a utility that updates selected columns from
corresponding columns in the matched catalog. This procedure would be appropriate if, for
example, the entries in a matched catalog were calibrated, and the calibrated measurements
needed to be passed back to the original catalogs for archival purposes. An updated
catalog could subsequently be re-registered as a new version of the existing catalog. Both
the original and new header information would now be saved in the system, maintaining a
complete history of catalog revisions. Via this mechanism, SKICAT is designed to maintain

a “living,” growing database, instead of a data archive fixed for all time.
2.3 Catalog analysis

The third layer of SKICAT, which is still under development, will consist of a powerful tool
box of modern data analysis algorithms to be applied for survey data space exploration and
the scientific analysis of the catalogs. It will facilitate more sophisticated scientific inves-
tigations of these expanding survey data sets, including a multivariate statistical analysis
package, and a wide variety of Bayesian inference tools, objective classifiers, and other
advanced data management and analysis packages and algorithms.

The analysis tools included in the current version of SKICAT are the GID3*/O-Btree
decision tree induction software and Ruler program for classification learning, as well as the
extremely useful collection of stream processing routines included in the standard FOCAS
distribution. The very same classification learning software which was used to create the
classifiers in SKICAT’s plate cataloging script are available for use on any SKICAT data
set, or even data from external sources. SKICAT provides an environment for implementing
these tools to train and produce classifiers for scientific uses of the DPOSS, or any other
catalogs.

We also intend to explore the potential of machine-assisted discovery, where modern,
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artificial intelligence-based software tools automatically explore large parameter spaces of
data and draw a scientist’s attention to unusual or rare types of objects, or nonobvious
clusters of objects in parameter space. We have begun applying the Autoclass (Cheeseman
et al. 1988) unsupervised classification software to DPOSS, with plans to implement this

and other Bayesian inference and cluster analysis tools within SKICAT in the future.
2.4 Application environment

The SKICAT system is largely written in C, Unix shell scripts, and FORTRAN, and it is
portable across Unix systems. As mentioned before, SKICAT is built around and incorpo-
rates a number of preexistent software packages: FOCAS routines for image detection and
measurement; the GID3*/0-Btree/Ruler induction software for object classification; and
the Sybase commercial relational database management system (DBMS) for maintaining
and accessing the data. While SKICAT was developed using these packages, none are irre-
placeable. Each package serves its purpose and, because of the modularity of the system,
could be substituted for another which performs the same function. In addition, SKICAT
provides quick and easy access to most system utilities through a common X-Windows
graphical user interface, while users familiar with Unix can access the same utilities di-
rectly from the Unix command line.

SKICAT was designed so that all database system operations specific to Sybase would
be transparent to the user. The user interfaces and underlying Unix utilities have been de-
signed to allow the user to select and specify subsets of catalogs using a slightly expanded
version of the industry standard SQL (Standard Query Language). This extended query
language provides additional features of specific interest to users in astronomy. For exam-
ple, unit conversion capabilities have been provided to allow the user to specify positional
values in a variety of astronomical units (e.g., hours, minutes, and seconds in addition to
degrees and radians). Most database operations controlled through the SKICAT software
are implemented using SQL, so that it would be relatively easy to replace the underlying

DBMS if the need arose.
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3 Constructing Plate Catalogs

In this section, we provide more detail on the steps involved in constructing a catalog from
a DPOSS scan. Additional details may be found in Appendix B. Aside from the initial
pre-processing steps, the process of cataloging a CCD image is very analogous to that for

a plate. We provide the details of these operations in Appendix C.
3.1 Pre-processing

Once a POSS-II plate has been scanned by ST Scl, only a few manual steps are required
before it may be pipeline processed using a Unix command-line-based program called
AutoPlate, or the X-windows-based graphical user interface to it. A digitized POSS-II
plate scan is provided in the form of pixel data consisting of arbitrarily scaled photographic
densities. Each DPOSS plate image is 23,040 x 23,040 in size. After defining the plate
boundaries, and the sky and saturation densities, the first step in processing the plate is to
perform the photographic density to arbitrary intensity conversion. A SKICAT program
automatically retrieves the portion in the southwest corner of each image that contains the
16 sensitometry spots that appear in each POSS-II plate. This program assists the user
in running an IRAF script to measure the 16 spots and compile a list of the densities. It
then prompts the user to interactively fit an ‘HD’ curve to the data points, providing a
density to intensity transformation for the plate scan.

The mathematical formula we use to fit the measured plate densities (D) to relative

intensities (I) is:
P(D)
(Ds— D) x (D7 - D) .

where P(D) is a polynomial function of the density, and the saturation and toe densities,

log! =

Ds and Dr, are those corresponding to fully exposed and unexposed portions of the plate,
respectively. The polynomial coefficients, together with the toe and saturation values,
establish the conversion applied to each pixel value whenever image blocks are subsequently
loaded and mosaiced to form larger images. As the average sky density is generally far
above the toe level, it is usually desirable to avoid fitting the polynomial to the lowest few

intensities, thereby improving the fit in the other portions of the curve. Similarly, the most
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nearly saturated point or two is also generally ignored. After several iterations adjusting
the relevant parameters, we have found it possible to reduce the residual between the fit
and all accepted data points to less than 5% in intensity.

There is a long history to efficiently modeling the HD curve. The method employed
by ST ScI (Russel et al. 1990), for example, involves a more complicated formula and
averaging many plates together. By their own admission, however, they find the more
complicated expression to be overkill for the linear part of the curve of most interest. In
addition, we found considerable variation of the curve among different plates, requiring
independent fits. As described in Weir, Djorgovski, and Fayyad (1994), we also find the
instrumental magnitudes resulting from these fits to be extremely consistent from plate to
plate, in the sense of only requiring a single zero point offset to match them. This provides,

in our opinion, the most important test of the validity of our linearization scheme.
3.2 AutoPlate processing

AutoPlate is a C-Shell script which executes a suite of other scripts, C code, and Fortran
programs to conduct the pipeline processing of plate scans from their raw pixel form to
SKICAT catalogs. The steps involved include everything from loading the pixel data
from exabyte tape, to image detection and measurement, to catalog construction and
quality control. The majority of image processing functions are accomplished using FOCAS

routines, while Sybase is used for database management.

3.2.1 Overlapping footprints

Each plate is analyzed as a set of 13 x 13 overlapping ‘footprint’ images. After pre-
processing, a plate scan exists on exabyte tape as 23 Vax VMS savesets of 23 images
each (see Figure 2). These image blocks are pasted together to form image footprints,
which form an overlapping grid covering the entire plate (see Figure 4). Each footprint is
20482 in size, with a minimum overlap between adjacent footprints of 272 pixels, or ~ 4.5
arcmin. The large overlap allows all but the largest objects to be reliably measured in

this piecemeal fashion, while providing a quality control check and statistics on footprint
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dependent measurement errors. In fact, analysis of these errors indicate that the systematic
errors induced by processing the scan in this fashion are at least an order of magnitude
below random image measurement errors.

A number of distinct levels of processing are applied to each footprint, leading to the
construction of individual footprint features tables. Footprints are identified by a row
number within the plate and by a column number within that row. They are created and
processed a row at a time, from bottom (south) to top. Up to nine image blocks must
be mosaiced together to form a single footprint image; up to three rows of image blocks
must be loaded on disk to form an entire row of footprint images. As each footprint row is
processed, AutoPlate loads the necessary image blocks from tape and deletes unnecessary
blocks from disk.

Consecutive footprint images, from left (east) to right, are created just prior to their
processing. Up to two rows of footprints are always on disk, facilitating the detection of
vertical mismatches between footprint tables. Each row of footprint features tables is saved
to the plate features table only after passing a number of quality control checks meant to
assure uniformity of catalog construction. This process is described in greater detail in the

Quality Control section below.

3.2.2 Image analysis

Footprint images are analyzed in a few ways prior to object detection. First, a quality
control check is performed by measuring correlations between alternating pairs of pixel
rows in the plate scan. This check was developed in response to problems detected in the
first batch of ST Scl scans. These correlations resulted from the scanning machine not
taking equal size vertical steps before raster scanning from the right or left side of the
plate. The problem seems to have been corrected, and all previously corrupted plates were
re-scanned. Nonetheless, we still perform the check as a part of our production system.
Next, AutoPlate creates a re-binned version of the image with one pixel per 8 x 8 in
the original. This scale matches that of the ‘sky’ image produced by the FOCAS detection

algorithm. To provide the FOCAS algorithm with a good first guess of the footprint sky, the
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value is initially estimated by binning the image into blocks of 642 pixels each, accumulating
the median and quartile sigma! for each block, then accumulating the median and quartile
sigma for all of the block measurements. Images of the sky median and sky sigma are
saved at this reduced (one pixel per 64 x 64) scale. This robust estimation procedure
provides relatively accurate initial sky and sky sigma values, even when relatively large
and bright sources exist in the image. Seeded with these values, the FOCAS detection and
background estimation procedures have been found to work well. We were able to test
the accuracy of this approach by applying it to the simulated plate images we describe in
Weir, Djorgovski, and Fayyad (1994), which were also used to help optimize the choice of
detection and measurement parameters.

AutoPlate also estimates the pixel-to-pixel correlation (horizontal and vertical com-
bined) within each footprint. For this measurement, in addition to applying the same
binning and median filtering procedure as above, AutoPlate excludes all pixels two and a
half sigma above the sky level. This technique was found to provide an extremely robust
and accurate measurement for all levels of pixel blurring, even when large saturated objects

appear in the image.

3.2.3 Object detection

The basic processes of object detection and measurement are accomplished using only
slightly modified versions of the standard FOCAS routines (Jarvis and Tyson 1979; Valdes
1982a). Algorithmic details of these programs may be found in the FOCAS documentation
(Valdes 1982b). Here we describe how we apply these functions and what are the relevant
parameter settings.

Just prior to object detection, a FOCAS catalog is automatically initialized for the
current footprint. The appropriate header values are determined in AutoPlate based upon

the current footprint row and column numbers, and from information derived from the

!We define a quartile sigma as 0.7415 times the difference between the 75th and 25th percentile values, a
robust estimate of the sample standard deviation that is insensitive to outliers, For a Gaussian distribution,
this is virtually identical (in the limit of large sample sizes) to the standard deviation defined in the normal
way.
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plate image header. The FOCAS ‘detect’ command then uses the header parameters for
driving its object detection and sky estimation procedure. Details of the detection process
appear below. The result of this command is a catalog of features, or contiguous pixels a
certain threshold above the background, and meeting a minimum area and signal to noise
ratio (SNR) requirement. The FOCAS detect command also produces an estimate of the
sky with a one pixel per 8 x 8 resolution. If this estimate significantly differs from the
median sky image computed previously, an error is reported and processing ceases.

For optimal sensitivity, the FOCAS detection algorithm applies a threshold equal to
some number of estimated standard deviations (sky sigma) above the locally estimated
sky. The assumed sky sigma is the robust value computed for the footprint, as described
in the Image Analysis section above. However, because of spatially varying pixel-to-pixel
correlation within each plate scan, using the same multiple of sky sigma as the threshold
for all footprints would not result in the same detection sensitivity.

To compensate for this effect and approach a common level of sensitivity between and
within plates, we sought to derive a factor by which to scale the measured sky sigma so as
to make it correspond to approximately one standard deviation in an unblurred version of
each footprint. To establish this scaling factor as a function of measured blur, we created
a simulated footprint image matching the average noise? and object number statistics of
real footprints, then we convolved it with a series of Gaussians of different width. Given
the convolution kernel, the appropriate scale factor is simply the square root of the inverse
of the sum of squares of the normalized kernel elements. By measuring the pixel-to-pixel
R? for each image, we are able to empirically derive a mapping from measured (square)
correlation to scale factor. We found a sixth order polynomial to provide a good fit to the
relation (see Figure 5). We also established the relation using a blank simulated sky image
and derived virtually identical results, lending confidence in the robustness and accuracy

of our correlation estimation procedure.

2The appropriate level of uncorrelated, Gaussian random noise was determined in an iterative fashion.
First, we found a Gaussian kernel which, when convolved with the image, produced a degree of blur, as
measured by the pixel-to-pixel correlation, closely approximating that of an average footprint. We then
found that noise amplitude which, after convolution, resulted in a measured sky sigma closely matching
that of an average footprint.
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We then used 2.5 times this scale factor times the estimated sky sigma as our detection
threshold. The additional detection parameters required by FOCAS include a minimum
object area, “significance limit” for object detection, and pre-detection blurring kernel.
We require every object to comprise six contiguous pixels. We set the significance limit to
-100, which is equivalent to turning off this SNR requirement (see the FOCAS manual for

details). We used the built-in FOCAS blurring function, which is simply:
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The FOCAS detection algorithm works by convolving the image with this kernel, then
searching for contiguous pixels with values greater than the locally estimated sky by the
specified detection threshold. To adjust for the convolution, which is meant to improve
the sensitivity of the detection algorithm, the detection threshold is scaled by the square
root of the inverse of the sum of squares of the normalized kernel elements. Note this is
the same blurring correction we applied earlier to account for the correlation induced by
the scanning process.

Our choice of detection parameters, in particular our scaling correction for pixel-to-
pixel correlations, results in relatively consistent sensitivity as a function of plate quality, as
evidenced by the relative uniformity of object density we detect from footprint to footprint
and plate to plate. Our choice of threshold, minimum area, significance limit, and pre-
detection blurring were chosen after extensive tests on both real and simulated images,
establishing some feel for the trade-off between completion (percentage of real objects
detected) and contamination (percent of detected objects which are not real). On simulated
images, this combination of parameters resulted in an average FOCAS detection isophote
corresponding to roughly 2.0 uncorrelated sky sigma, which is sufficiently far into the noise
as to pick up every object readily detectable by eye. It also resulted in what we considered
a manageable number of detections per footprint and plate, in excess of the density saved

in previous Schmidt plate surveys. Typical galaxy detection limits for the J and F DPOSS
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plates are found to be 21.0™ to 21.5™ in g and 20.1™ to 20.6™ in r, respectively. For point

sources, the limit can extend up to half a magnitude fainter.

3.2.4 Object measurement

The local sky brightness for each feature is measured using the FOCAS ‘sky’ command. It
measures the median pixel value in an annular region surrounding each feature, avoiding
pixels that are within the detection isophote of another feature. The accuracy and system-
atic effects of this sky measuring algorithm are addressed in Weir, Djorgovski, and Fayyad
(1994), where we discuss details of our photometry.

After obtaining the sky estimate, additional attributes for each feature are measured
using the FOCAS ‘evaluate’ routine. The total number of measurements number more
than 30, including those in Table D: The indicated magnitudes are instrumental and are
computed according to:

m = 30.0 - 2.5log L

where L is the luminosity, or sky-subtracted integrated intensity. The offset of 30.0 is
arbitrary and was chosen to make the instrumental magnitudes approximate the final
calibrated values within a magnitude or two. The aperture magnitudes are computed
using a five arcsec radius. The ‘total’ magnitude and area are computed by ‘growing’ the
detection isophote out a pixel at a time in all directions until the total area is at least
twice the original. This magnitude is meant to provide a flux measurement less biased
with respect to surface brightness profile, approximating something like an asymptotic or
true total magnitude. The cost for decreased systematic error is greater sensitivity to sky
subtraction, integration over more noisy pixels, and hence, increased random error (relative
to isophotal or aperture magnitudes). A substantial portion of the paper Weir, Djorgovski,
and Fayyad (1994) is dedicated to an analysis of the photometry obtained from DPOSS
using SKICAT, including the results of detailed simulation studies.

FOCAS also sets a number of flags for each feature, each of which is saved as an
attribute. These flags indicate such things as whether the object touches the edge of the

footprint, the object is below the sky level in integrated intensity, the object’s size exceeds
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current FOCAS limits, there are saturated pixels in the object, or the object was not split
at any level by the FOCAS deblending routine. Additional useful attributes are obtained
by taking non-linear combinations of some of those listed in Table D. For example, using
the intensity weighted second moments, we can calculate the ellipticity and position angle
of each feature. Additional attributes, the so-called ‘revised’ ones described below, are
defined by the position of a feature within the statistical distribution of that footprint’s
features within some measured parameter space (e.g., within the plane defined by the first

radial moment and the total magnitude).

3.2.5 Object deblending

After each feature in a footprint has been evaluated, SKICAT next applies the FOCAS
‘splits’ command. Effectively, this routine runs the detection algorithm on every existing
feature, but using successively higher thresholds. ‘Islands’ detected at a given threshold are
entered into the catalog as distinct features, and all attributes are remeasured for them.
The ‘parent’s’ flux is divided between the ‘children’ according to the ratio of isophotal
fluxes obtained using the higher threshold. This process continues recursively until no
more islands are detected.

All parents and intermediate children (i.e., a feature’s full family tree) are saved within
the FOCAS catalog and likewise within SKICAT. Each feature is referenced by an entry
and subentry number. A parent and all of its children share the same entry number.
Children are distinguished by the hierarchically constructed subentry number: subsequent
generations append additional digits to the end. The leaf or leaves in a feature’s family
tree correspond to indivisible objects and are marked as such by a flag attribute.

We note that improvements can certainly be made to the deblending process. For
example, other methods could be used to improve the quality of the photometry of the
deblended objects, better take deblending into account when matching overlapping images,
handle the extreme crowding conditions to be found in lower Galactic latitude POSS-II
plates, etc. Nonetheless, we find the present implementation to be more than sufficient

even for detailed analyses of higher latitude plates, and that it at least represents a step
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above reduction without the use of deblending at all, as in the case of some previous surveys

(e.g., APM, Maddox et al. 1990).

3.2.86 Classification related measurements

An additional set of attributes are measured solely for the purpose of facilitating feature
classification. Four revised attributes are determined by automatically estimating and
subtracting the ‘stellar locus’ from the parameters M ,ye, the magnitude of the brightest 3
X 3 pixel region, of total intensity L. e; the log of the isophotal area, log A; the intensity

weighted first moment radius, r1; and 5, where

A
S = gl JOX I

and I is the average intensity of the detection isophote. The stellar locus is the attribute
value as a function of magnitude around which point sources are fairly narrowly distributed,
at least at brighter magnitudes. As described in Weir, Fayyad, and Djorgovski (1994), we
have found that the resulting revised attributes are relatively insensitive to footprint-to-
footprint, and even plate-to-plate, variations, and are thus robust parameters for use in
feature classification.

In order to derive even more powerful classification attributes, we form an empirical
estimate of the PSF for each footprint. Along with magnitude and ellipticity, the four
revised attributes are fed as input to a decision tree classifier, which culls out a list of
‘sure-thing’ stars. This represents a significant application of machine learning technology
to the classification task. A FOCAS routine then adds images of these stars to form a
two-dimensional PSF template.

Using the PSF template, the FOCAS ‘resolution’ routine determines the best-fitting
‘scale’ (a) and ‘fraction’ (§) values, which parameterize the fit of a blurred (or sharpened)
version of the PSF to each feature (Valdes 1982a). The template used to model each

feature is of the form:
t(ri) = Bs(ri/a) + (1 = B)s(ri)

where r; is the position of pixel i, a is the broadening (sharpening) parameter, and 3
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is the fraction of broadened PSF. This template-based approach is the core of FOCAS’s
Bayesian classification method. Objects are classified as stars, galaxies, artifacts, etc.,
according to their maximum likelihood (best-fitting) location within two-dimensional scale
and fraction space. Extensive tests performed by Valdes (1982a) indicate that one can
achieve significantly higher accuracy in star/galaxy separation with this template-fitting
approach versus simpler approaches employed previously. Weir and Picard (1991) explicitly
tested the use of these two techniques on digitized Schmidt plate data and confirmed this
result.

In the present version of SKICAT, we combine these resolution parameters along with
total magnitude, ellipticity, and the four revised attributes described above to form an even
higher dimensional space in which to perform feature classification. Actual classification is
run as a post-processing procedure, using the measured attributes within the plate catalog.
One can thereby alter the existing, or create an entirely new, classifier and apply it to a
catalog at any future date. The classifier currently applied to plate features within SKICAT
was generated using the GID3*/0-Btree and Ruler decision tree induction programs. A
full description of how it was created and the results we have achieved on actual plate data
appears in Weir, Fayyad, and Djorgovski (1994). The net effect is that by employing this
new technology, we are able to go about a magnitude deeper in achieving accurate object
classifications, resulting in approximately three times larger classified object catalogs than

in previous surveys using comparable data.

3.2.7 Quality control tests

Each individual footprint FOCAS catalog, and its corresponding revised attribute list, is
joined into a Sybase table for subsequent processing. As a quality control check, the current
footprint features table is matched with the tables of the footprints to its left and bottom,
if they exist. If any major discrepancies are detected in the mean or standard deviation
of measurements in the overlap, processing is halted and an error reported. Otherwise,
AutoPlate appends these results to a summary file characterizing the footprint row.

After a row is complete, Autoplate searches the footprint summary file for outliers
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and trends, halting the program if it encounters any problems. If none are found, the
previous row of footprints is added to the Sybase plate catalog and any auxiliary files
are saved. First, the row’s footprint summary file is appended to the corresponding file
for the plate. Next, each footprint’s compressed original, sky, median sky, and sky sigma
images are pasted into corresponding composite images for the entire plate. Footprint
specific parameters are appended to a footprints file. All features with central coordinates
in a nonredundant portion of the plate image are added to the plate features table, while
features whose outer isophotes extend beyond any single footprint’s boundaries are saved to
a border objects list. Generally these are features which appear at the edge of the plate. In
addition, AutoPlate appends to a list of footprint overlap statistics, and summary thereof.
Data for the previous row are deleted after each of these operations is complete.

After all rows have been processed, the system checks the footprint summary file for
outliers and trends among footprint statistics in the vertical direction. Provided none
are found, catalog generation is complete, a plate catalog header is created (if it was not

already) and all remaining footprints and image blocks are deleted.

3.2.8 Data products

The final products of an AutoPlate run are a SKICAT catalog, consisting of a Sybase format
features table and header table, and several auxiliary files. The plate catalog resides on the
Sybase disk partition while the auxiliary files are saved within a Unix directory hierarchy
created specifically for that plate. The auxiliary files include the following images: a re-
binned version of the plate scan containing the average of every 8 x 8 pixels in the original;
the ‘sky’ image produced by the FOCAS detection algorithm at the same scale; images of
the median and quartile sigma of the plate scan at a one pixel per 64 x 64 scale. Besides
providing an overall reality check of the AutoPlate process, these images may be valuable
for future scientific programs, such as searches for low surface brightness galaxies.

In addition, SKICAT saves each of the FOCAS ‘areas’ files produced for each footprint.
These files contain a run-length encoding of all the pixels comprising every feature in each

image. This information may prove useful in the future for locating the precise extent of
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a feature when all of the imagery data, in addition to catalogs, are readily available online
for querying and analysis.

The other auxiliary files produced by AutoPlate are those produced and used for qual-
ity control purposes. They include a footprint statistics file, containing lists of statistics
measured for each footprint (e.g., number of features detected, average sky level, etc.)
which are used to detect trends and outliers among the footprints along any given plate
row or column. The other quality control file contains lists of all of the overlap statistics

measured between adjoining footprints.
3.3 Post-processing

After a plate catalog has been created by AutoPlate, there are still a few operations which
must be performed as a part of the plate’s standard pipeline processing. These include
the assignment of Right Ascension and Declination (RA,Dec) to each object, as well as
classification. As neither of these operations require access to the pixel data themselves,
one is able to re-run either of these multiple times in the future using new and better

coefficients or algorithms.

3.3.1 Astrometric transformation

The J2000 RA and Dec of the central pixel (specified in plate standard coordinates by the
XC and YC attributes) of each feature is calculated using coefficients in the plate catalog
header. These coefficients are initially provided by ST ScI and are supposed to be good
to ~ 0.5 arcsec RMS accuracy over scales less than about a square degree. When in the
future better plate solution coefficients are available, it is simply a matter of entering them
in the catalog header, then re-executing a catalog modifying procedure to assign a new RA

and Dec to each feature.

3.3.2 Classification

The plate features classifier provided with SKICAT was generated using the GID3*/0-

Btree and Ruler programs, and is implemented as a procedure executed by a more general
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utility for modifying columns within a database table. By applying a set of rules that
condition upon a subset of the parameters in a plate features table, the procedure provides
a classification to each object. An entry within a plate’s header table specifies the classifier
rules file to use. Therefore, it is simply a matter of editing this field and re-running
the appropriate column modifying procedure to apply a new and improved rules-based
classifier to the catalog. Similarly, an entirely different plate classification algorithm could

be designed in the future and implemented as an alternative column modifying procedure.

3.3.3 Bright object editing

Currently, the SKICAT user is required to hand create a list of the ‘bad regions’ within the
plate, such as areas corrupted by bright stars. The SKICAT Plate and CCD Processing
Cookbook provides a description of how to create such a list using the SAOImage display
program. One detects the bad regions by analyzing the 8 x 8 binned average of the full
scan image produced by AutoPlate. By displaying this image, the user may easily pick out
and mark the 100 or so brightest objects in the scan which will have been poorly processed
by AutoPlate. It is particularly important to mark the regions surrounding bright stars,
as their halos and spikes are split into sometimes hundreds of small artifacts which may
be mistaken for real objects in the catalog (e.g., see Figure 7).

At this time, the bad regions list is not used to filter or flag entries in the SKICAT
plate catalog itself, but rather for subsequent filtering of ASCII data files generated by
queries of the plate or matched catalog. Details of how this filtering is performed are in
the Queries section of the SKICAT Plate and CCD Processing Cookbook. We also note

that the entire process of bright object detection will also be automated in the near future.

3.3.4 Catalog registration

Once all of the aforementioned processes are complete, the plate catalog is ready for reg-
istration into the SKICAT catalog management system. This loads the catalog header
information into the SKICAT System Tables, allowing it to be matched with other cata-

logs or saved to/loaded from tape. At this time, the plate catalog, along with the auxiliary
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files, are generally saved on an archive tape, and plate processing is complete.

25



4 Constructing Matched and Object Catalogs

4.1 Matched catalogs

SKICAT provides the ability to match features from multiple plate and CCD catalogs based
on the similarity of their measured positions in celestial (RA,Dec) coordinates. This pro-
cedure is essential for analyzing objects measured in multiple bandpasses, such as finding
optical IDs of non-optical sources; constructing object lists spanning multiple overlapping
images; and for performing consistency checks of object measurements and classifications.
Details of the data structures pertaining to the matched catalog appear in Appendix D.

The process of adding a catalog to the matched catalog involves matching each feature
in the catalog to the nearest object meeting certain criteria within the matched catalog,
after solving for a small systematic X,Y offset between the two. To perform this matching,
the filtered source catalog is broken down into a user-specified number of solid angle ‘seg-
ments’. A best fit transformation in X and Y is solved for using a robust fitting algorithm
and applied to each segment when it is matched. To optimize this process, the catalog
should be split into as many segments as necessary to allow for systematic deviations in
its astrometric accuracy.

For each segment, the matcher attempts to minimize the overall match error (defined as
the average matched feature difference) separately in X and Y by repeating the matching
process until the errors meet specified criteria. For each feature in a segment, the matcher
attempts to find the closest feature within some search radius within the matched catalog,
offsetting by the previous iteration’s match error in X and Y. These errors are accumulated
over each iteration to form a mean offset. The initial search radius is given by the user;
subsequently it is determined as some multiple of the measure standard deviation in the
previous iteration’s offsets. These average offsets and the standard deviations are computed
only for a quartile-sigma clipped fraction of the matches from the previous iteration, in
order to exclude outliers from the estimate. This matching and estimation procedure
repeats until the iteration’s match error in both X and Y is less than some multiple of

the estimated error in the mean offset. The matcher then performs a final pruning of the
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matched object list, passing only those matches with a residual Chi-squared error less than
some threshold.

The matcher then assigns each feature an identification number according to the match
results. Features with no corresponding object in the matched catalog are assigned the
default next ID, which is then incremented. For each feature from the segment, a row
including a user-specified subset of attribute columns is appended to the matched catalog’s
features table. The match and converge process is repeated for each segment of the catalog.
After each segment has been matched, information about the input catalog is added to

system files detailing the contents of the matched catalog.
4.2 Object catalogs

While the matched catalog is the most comprehensive form of database produced by SKI-
CAT, it is generally too unwieldy for direct use in large scale survey analysis. By allowing
a virtually unlimited number of independent feature entries per object, very little data re-
duction actually takes place in the matching process. Although in practice, one generally
limits the number of attributes saved in the matched catalog, this still leaves unsolved the
problem of combining the multiple measurements that are usually present for any given
attribute and feature.

To provide the user with power and flexibility in accessing the matched catalog for
scientific analysis and calibration, we developed a sophisticated database querying mecha-
nism. This program summarizes data from the matched catalog to form an object catalog,
which by our definition contains just one entry per object. The query program has two
primary inputs: a filter and an output specification file. The filter basically defines the
conditions that an object, or its constituent features, must meet in order to be passed on
for output. A full description of the filter language appears in the SKICAT Users Manual
and specific useful examples appear in the Query section of the SKICAT Plate and CCD
Processing Cookbook. These filter conditions might include a requirement on the number
of features measured per object, that an object be measured in a particular catalog, that an

object not be measured in a particular passband, that an object’s magnitude falls within a
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certain range, etc. The most important filter specification is of an allowable RA and Dec
range, as the matched catalog is sorted on those fields. All queries to the matched catalog
should specify the most restrictive RA and Dec limits possible, for most efficient retrieval
of the data.

The output specification file defines which attribute columns to pass on from the query
and how to combine multiple measurements into one. For example, the following out-
put specification would produce a table containing the following five columns: the object
ID, RA, and Dec from plate J442, and calibrated J and g magnitudes derived from a

combination of all feature measurements for each object:

ObjectId/j442 Y%d
RA/j442 %d
Dec/j442 Yd
Mag/C/J Yd
Mag/A/g Yd

To the right of the column/source specifiers are format codes, indicating how to print the
column value if the output is directed to a text file. For this output specification to result
in a valid query, the filter must have restricted its output to those objects detected in
plate J442 for which there is at least one g (CCD) measurement, since we are requesting
output from both these sources. The specification Mag/A/g refers to the average (A) of all
calibrated g magnitudes measured for that object. The preceding specification asks for the
object’s J magnitude not necessarily from plate J442, but from that particular feature that
was measured closest to the center (C) of its source catalog (and, therefore, presumably
the least susceptible to field effects).

Using the query program, the user can combine the data in the matched catalog in most
ways needed for subsequent scientific use. To facilitate the construction of the filter and
output specification files, we created an X-windows interface to the program (see Figure
10). Using either program, the user has the option of producing another Sybase table

or an ASCII text file. The former is of use if the user might wish to perform subsequent
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queries of the resulting table using any of the available Sybase database management tools.
A Sybase table is also the most appropriate form for a catalog one might wish to make
available on-line, through the Astrophysical Data System, for example. An ASCII file, on
the other hand, though inefficient, is an almost universally accepted format for general
purpose or homemade analysis programs.

We also developed a similar query mechanism and graphical user interface for filtering
and outputting portions of any Sybase table, such as a plate or CCD features table, or even
an object table produced by the query mechanism. Using these programs, one can perform
all of the same basic filtering and output operations, but without the functionality related
to handling multiple entries per object. Again, the resulting tables may be produced in
either Sybase or ASCII format.

After the successive application of the tools described in this chapter, from creating
individual plate and CCD catalogs, to matched catalog construction, to the generation
of user-specified object catalogs, the user will have reduced the raw pixel data into a
form suitable for systematic study. Following the next chapter, in which we describe our
classification methods in more detail, we will present results derived from the application

of these SKICAT programs to actual DPOSS data.
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A Appendix - Database Definitions

Below is a description of the most commonly used database terms within the SKICAT
system:

A feature is the set of measurements (magnitude, surface brightness, position angle,
etc.) of a unique object contained in a catalog. For example, a star may be a feature
within a catalog, as might be a galaxy or a satellite trail detected on a plate.

A table is a collection of data organized by row and column, where each row has a value
(or space for a value) for every column in the table. For example, a list of galaxies may
be organized in the form of a table, with one row per galaxy (feature) and one column per
galaxy measurement. SKICAT tables are stored and manipulated using Sybase. Therefore,
all references to tables refer specifically to the Sybase data structures of the same name.

A catalog consists of a features table and a header table. These are data sets produced
by Autoplate and AutoCCD. A features table contains one row for each feature appearing
in the catalog. The header table contains information relevant to the entire catalog (image
source, date of creation, etc.) and is generally used for reference purposes.

An object is a unique image artifact or physical sky object (i.e., star, galaxy, etc.) to
which there may correspond multiple features within distinct catalogs. For example, the
object M87, which lies in the overlap of two plates, would appear as a feature within both
plates’ catalogs.

A matched features table contains features from multiple, matched catalogs. Fea-
tures at the same RA and Dec position (within astrometric uncertainty) are considered to
be different measurements or features of the same object. They are assigned a common
object ID during the matching process.

A matched catalog consists of a matched features table and a table listing those
catalogs comprising it. New catalogs are added to it by matching each new feature with
existing matched features (objects). The user controls which subset of measurements to
include in the matched features table and also specifies parameters affecting the matching

algorithm. In a reverse operation, selected columns within catalog features tables may be
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updated from their corresponding entries in the matched features table.

Objects tables are produced by filtering and outputting selected columns of object
entries from any individual catalog or the matched catalog. They might be generated for
catalog calibration, specialized scientific analysis, or as distributed data products (such as
the PNSC). These tables may also be queried and manipulated using the SKICAT table

manipulation tools.
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B Appendix - Plate Processing Details
B.1 Digitized POSS-II Scan Data Format

The plate pixel data, consisting of arbitrarily scaled photographic densities, are provided
by ST Scl as a single file, two bytes per pixel, on a single VMS backup saveset on exabyte
tape. For processing by SKICAT, the single pixel file is transferred to another exabyte as
23 VMS backup savesets, each containing 23 image ‘blocks’. The scanned image is broken
into these more manageable image blocks, of at most 1024 x 1024 pixels, to facilitate
retrieval and processing.

The following additional files produced by ST Scl are also necessary for processing a

plate:

scan_name.gsh - Plate scan header file
snap_name.hhh - Snapshot image header file
snap_name.hhd - Snapshot image pixels

The scan header contains parameters, such as the plate name, band, and astrometric solu-
tion coefficients, which are eventually loaded into the plate catalog header. The ‘snapshot’
image is a sparsely sampled (one pixel per ~ 33 x 33) version of the plate scan, useful not
only as a reality check, but for determining the usable portion of the scan image. Figure
3 depicts such a snapshot.

One must analyze the snapshot image to determine the plate sky and saturation densi-
ties and the image boundaries. These parameters are listed in Table 1 The pixel positions
in the snap image should be multiplied by 32.914 to match the plate dimensions. The pixel

values must be multiplied by 1.5259 x 10~ to convert to properly scaled densities.
B.2 Running AutoPlate

AutoPlate is designed to automatically perform all levels of processing for the footprints in
all columns of all rows of a plate. However, if it becomes necessary to restart the script at
a particular stage of plate processing (due to, for example, a prior system failure), control
parameters supplied at run time can force it to begin at a specified level of the processing
of the footprint at a specified column of a specified row. Any subsection of a plate may be

processed or reprocessed with the same facility.
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The AutoPlate script may be invoked either directly from the C shell prompt or from
within the xautoplate graphical user interface described in the SKICAT Users Manual
(see Figure 6). The parameters that control AutoPlate are specified in a file, the name of
which must be supplied as the sole command-line parameter when AutoPlate is initiated.
The parameter specification file details the data to be processed, the initial processing
level, and the footprint row and column at which to begin and end processing. A detailed
description of the parameters in this file is described in an appendix within the SKICAT
Users Manual. It is automatically produced by a separate initialization program that is
run prior to plate processing.

In addition to the parameters file, the only additional inputs required by AutoPlate
(and referenced in the parameters file) are the file containing the plate density-to-intensity
transform coefficients and the plate header file provided by ST Scl. Assuming all the
necessary image blocks do not already reside on disk, the exabyte containing the raw pixel

data must also be loaded on the appropriate tape device.
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C Appendix - Processing CCD Images

C.1 Pre-processing

The construction of CCD catalogs is similar to the process of constructing plate catalogs,
although simpler. As with plate data, there are a number of preliminary steps before
an image is ready for processing. In particular, the CCD image should be reduced (i.e.,
debiased, flat-fielded, calibrated, etc.) according to standard astronomical procedures.
Methods and specific software for performing these tasks on DPOSS calibration sequences
obtained using the Palomar 60 inch telescope are described in the SKICAT Plate and CCD
Processing Cookbook.

After these standard CCD reduction tasks are performed, the image is nearly ready to
be run through the catalog processing script. The user must first run an initialization script
in order to create and load a parameters file containing header and control information
for subsequent processing. To the extent it is possible, this program loads the necessary
values from the image header itself. Otherwise, the user must enter the values, such as
image center RA /Dec, descriptive name, date of observation, and photometric calibration

coeflicients manually.

C.2 AutoCCD processing

Like its sister AutoPlate, the AutoCCD script takes a parameter specification file as its
sole argument and, in turn, calls a collection of programs, primarily from FOCAS, to
construct a SKICAT catalog from the indicated CCD image. All of the same sky and object
attributes measured for plate images are measured for CCDs, using the same routines.
Unlike AutoPlate, there is not a corresponding X-Windows interface.

After initial object detection, measurement, and splitting, the script attempts to auto-
matically generate a list of stars with which to form the empirical PSF estimate. It tries
to do so by first looking for the stellar locus in a plot of intensity weighted first moment
radius (the FOCAS IR1 parameter) versus magnitude. After estimating the stellar IR1
parameter, AutoCCD uses it to create a filtered catalog of candidate stars. It then feeds

this catalog to a FOCAS script which iteratively prunes the list until some maximum level
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of dispersion in IR1 is achieved. The script then allows the user to view and prune the
candidate stars before actually forming the template.

Next, the script runs the FOCAS ‘resolution’ routine, which measures the same scale
and fraction attributes as described in the AutoPlate section above, and based upon these
values, applies a simple set of default rules for classifying objects as stars, fuzzy stars,
galaxies, or artifacts. The script then allows the user to review the image in order to
facilitate changes to the FOCAS-provided object classifications. If a good PSF template
was formed and the data are of sufficiently high resolution and quality, FOCAS will do an
excellent job of classifying the objects, generally beyond the detection limits of DPOSS.
Even better classifications are no doubt achievable with the CCD data by applying machine
learning to derive more complex rules, and SKICAT was designed to facilitate just that.
However, we found the quality of the standard FOCAS classifications more than sufficient
for our present purposes: to facilitate photometric calibration and construction of training
sets for plate object classification.

Once the construction of the FOCAS catalog is complete, meaning all attributes have
been measured and classifications assigned, a final routine transforms the FOCAS format
catalog into a SKICAT catalog. The latter is comprised of the CCD header, which contains
information from both the FOCAS catalog header and the AutoCCD parameters file, and

a features table of the exact same format as that of a plate catalog.
C.3 Post-processing
C.3.1 Astrometric transformation

One has three options for setting the RA Dec coordinates of the objects in a CCD catalog,
depending on what, if any, other catalogs covering the same field currently exist in the SKI-
CAT database. Ideally a plate catalog covering the CCD field has already been created,
in which case a SKICAT tool performs the following operations. Using the approximate
position of the CCD frame saved in the CCD’s header file, the program automatically
searches the relevant portion of the plate catalog and tries to match the two. The pro-

gram automatically restricts the search to objects classified as stars within an intermediate
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magnitude range, as one expects these objects to provide the most consistent and precise
astrometry. It then allows the user to interactively view and correct the matches it finds
(see Figure 8). One can accept or reject any of the suggested matches before allowing
the program to solve for the astrometric solution. First, the program finds the transfor-
mation matrix from CCD to plate standard coordinates. Then, the program applies the
plate’s standard to celestial coordinate transformation polynomials to compute RA and
Decs. This same interface would be useful for scientific projects involving the association
of astrometric coordinates with deep CCD images not even used for calibration.

If an overlapping plate catalog is not available, but a CCD catalog is, the user may
execute an analogous script which determines the astrometric solution using the other
CCD’s celestial coordinates. In this case, it derives a single matrix expressing shift, shear,
scale, and rotation for converting directly from X,Y to RA,Dec coordinates.

As a final resort, the RA and Dec values of a CCD catalog may be derived by assuming
the image is rotated counterclockwise relative to nominal (i.e., north to the top and east
to the left) an amount indicated by the header’s position angle column, and centered on
the approximate position saved in the header. This procedure should only be used in the
event no other SKICAT catalog exists covering the same field of view. Ultimately, all
CCD catalogs should be astrometrically calibrated using the plate catalog to which they
most directly apply. This will minimize matching error when the catalogs are eventually

matched.

C.3.2 CCD registration

At this point, the catalog is ready for registration into the SKICAT catalog management
system. As with plate catalogs, a catalog must be registered in order to be matched with
other catalogs or saved off-line in a manner such that it can be reloaded by SKICAT.

C.3.3 Photometric calibration

As with the astrometric assignment of CCD catalogs, the user has a choice of photometric

calibration methods, depending on what catalogs are already loaded in the system. One
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method performs the calibration assuming a default color term, meaning a user-specified
color is applied when performing the instrumental to calibrated magnitude transformation
given by 2. Independent default colors are assumed for stellar and non-stellar objects and
are specified within the CCD header file. This routine also uses header columns containing
the magnitude zero point offset term (A), extinction term (B), color term (C), exposure
time (t), and airmass (sec(z)) parameters to derive the calibrated magnitude (m) saved in

the CCD features table. These parameters are used in the relation:

m = Mmins + 2.5log(t) + A + Bsec(z) + C(g — r), (2)

where m;y,; is the measured instrumental magnitude and (g — ) is the default color term
applied. Any of the four instrumental magnitudes available in the CCD features table may
be substituted for m;p,:

Once red and blue catalogs of the same CCD field have been created and matched
together within SKICAT, one may calibrate the magnitudes of each using actual color
information. One has three options, depending on whether one wants to update either
the red or blue catalog, or both. One command takes the names of corresponding blue
and red CCD catalogs and updates the magnitudes of both by simultaneously solving the
relation 2 for objects measured in both the blue and the red. Unmatched objects are not
affected. Alternative programs exist in the event that one only wants to update one of the

two catalogs using this method.
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D Appendix - Matched Catalog Data Structure

The primary data structure comprising the matched catalog is the MatchedFeatures ta-
ble, which contains one row for each feature added from each constituent catalog. The
MatchedFeatures table contains a user-defined subset of the columns from the catalog fea-
tures tables. Features are linked together by an Objectld column which indicates which
object each feature is associated with (see Figure 9). A MatchedCatalogs table indicates
those catalogs which have been added to the matched catalog. A third table, named
MatchedCount, maintains a running count of the number of features associated with each
Objectld and is maintained simply for improved query performance.

The user can modify the parameters which control the matching process by setting
parameters in the MatchProc table. The list of columns from the catalog features table
which are included in the matched catalog is maintained in the MatchColumns table. The
parameters which control the process of adding a catalog to the matched catalog (located

in the MatchProc table) are:

NextObjectId: the next unused Objectld used to uniquely identify objects.

MaxObjectDistance: the maximum allowable distance between two matched features

in arcsec.
XSeg: the number of segments (in X dimension) to break the catalog into for matching.
YSeg: the number of segments (in Y dimension) to break the catalog into for matching.

QSigmacCilip: The quartile-sigma clipping threshold for computing offset means and stan-

dard deviations.

SearchNumSig: The search radius applied for second and subsequent iterations, in terms

of measured offset standard deviations.

ErrMax: the maximum Chi-squared positioning error in X and Y for a match to be

accepted.
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ConvergeMode: 0 for automatic convergence, 1 for manual convergence.

ConvergeScale: the maximum allowable average match difference in X or Y, in terms of

estimated error in the mean offset, for convergence.

MaxNumPasses: the maximum number of matching passes for auto convergence, exact

number of passes for manual convergence.
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Figure 1: An overview of the SKICAT system.

Figure 2: A plate scan is saved as 23 Vax VMS savesets (rows) of 23 image ‘blocks’ each.
Each image block consists of 1024 x 1024 pixels, except at the right and top edges, where
one dimension is only 512.

Figure 3: ST ScI produces a ‘snapshot’ image for every plate scan. It contains one sample
pixel per every ~ 33 x 33) in the full scan. The snapshot may be used to quickly and easily
check general qualities of the scan.

Figure 4: A plate scan is analyzed as a set of 13 x 13 overlapping footprint images of 20482
pixels each. Not only is this approach computationally convenient, but it provides greater
sensitivity to position-dependent plate effects. It also facilitates quality control via the
systematic comparison of the overlap regions.

Figure 5: Given the measured image blur (R?), we establish the appropriate factor by
which to scale the measured sky sigma to approximate that of an unblurred version of the
same image.

Figure 6: The X-Windows catalog construction interface within SKICAT.

Figure 7: The regions surrounding bright stars must be avoided when analyzing the plate
catalogs generated by SKICAT, as it typically splits these objects into dozens, or even
hundreds, of spurious artifacts.

Figure 8: SKICAT automatically searches a plate catalog for the region overlapping a CCD
frame. The program returns with a list of suggested matches and displays the overlapping
portions of the two catalogs in graphical form, as shown above (plate to the left, CCD to
the right). The displayed coordinates are those of the plate scan. On a workstation, the
matched objects are color coded as well as numbered, allowing the user to easily identify
and remove spurious matches from the list.

Figure 9: An overview of the SKICAT object matching process.

Figure 10: The X-Windows catalog query interface within SKICAT.
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Label Description

xmin - Minimum useable X coordinate in plate image
Xmax - Maximum useable X coordinate
ymin - Minimum useable Y coordinate
ymax - Maximum useable Y coordinate
spotxmin - Beginning of spots boundary in X
spotymax - End of spots boundary in Y
sky - Density of the sky at plate center
saturation - Saturation density of the plate
Table 1:
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Label

Description

XC

YC
MCore
MAper
Mlso

MTot
SLi

SSBr
Ispht
Area
TArea
XAvg
YAvg
ICX
ICY
IXX
IXY
IYY
IR1
IR3
IR4
CX
CY
XX
XY
YY
R1

x position (center of maximum 3 x 3 pixel integrated intensity)
y position

core magnitude (from maximum 3 X 3 pixel integrated intensity)
aperture magnitude (from integrated intensity within aperture)
isophotal magnitude (from integrated intensity within detection
isophote)

total magnitude (from integrated intensity within ‘grown’ isophote)
sigma of sky subtracted integrated intensity (luminosity) within
detection isophote

local sky sigma

isophote brightness (average intensity along detection isophote)
isophotal area (area within detection isophote)

total area (area within ‘grown’ isophote)

average x width

average y width

X intensity weighted centroid

y intensity weighted centroid

xx intensity weighted second moment

Xy intensity weighted second moment

yy intensity weighted second moment

intensity weighted first moment radius

intensity weighted third moment radius

intensity weighted fourth moment radius

x unweighted centroid

y unweighted centroid

xx unweighted second moment

xy unweighted second moment

yy unweighted second moment

unweighted first moment radius

Table 2:
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SKICAT Overview:

AutoPlate

Catalog
Construction:

FOCAS
AutoPSF
Classifiers

AutoCCD

Catalog
Management:

DB interface
Sybase

Matching
Filtering

Single plate and
CCD image catalogs

Matched catalogs
PNSC (Master cat.)

r~

Scientific
Analysis:

MVA (Statprog)
Decision Trees
Neural Nets
AutoClass
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Abstract

We describe the automated object classification method implemented in the Sky Image
Cataloging and Analysis Tool (SKICAT) and applied to the Digitized Second Palomar
Observatory Sky Survey (DPOSS). This classification technique was designed with two
purposes in mind: first, to classify objects in DPOSS to the faintest limits of the data;
second, to fully generalize to future classification efforts, including anything from classifying
galaxies by morphology, to improving the existing DPOSS star/galaxy classifiers once a
larger volume of data are in hand. To optimize the identification of stars and galaxies
in J and F band DPOSS scans, we determined a set of eight highly informative object
attributes. In the eight-dimensional space defined by these attributes, we found like objects
to be distributed relatively uniformly within and between plates. To infer the rules for
distinguishing objects in this, but possibly any other, high-dimensional parameter space,
we utilize a machine learning technique known as decision tree induction. Such induction
algorithms are able to determine near-optimal classification rules simply by training on a set
of example objects. We used high quality CCD images to determine accurate classifications
for those examples in the training set too faint for reliable classification by examining the
plate scans by eye. Our initial results obtained from a set of four DPOSS fields indicate
that we achieve 90% completeness and 10% contamination in our galaxy catalogs down to
a magnitude limit of ~ 19.6™ in r and 20.5™ in g, within F and J plates respectively, or an
equivalent By of nearly 21.0™. This represents a 0.5™ — 1.0™ improvement over results from
previous digitized Schmidt plate surveys using comparable plate material. We have also
begun applying methods of unsupervised classification to the DPOSS catalogs, allowing
the data, rather than the scientist, to suggest the relevant and distinct classes within the
sample. Our initial results from these experiments suggest the scientific promise of such

machine discovery methods in astronomy.

keywords: classification, sky surveys



1 Introduction

The first step in analyzing any imaging sky survey is to identify, measure, and catalog all
of the detected objects into their respective classes. Once the objects have been measured
and classified, further scientific analysis may proceed.

The accuracy of star/galaxy separation generally determines the effective limiting mag-
nitude, in terms of scientific usefulness, of imaging surveys. This limit is, in very many
respects, more important than the object detection limit in terms of its impact on the va-
riety of programs for which the data may be used. For example, in order to effectively use
the data to compare against models of star or galaxy counts or colors, measure the angular
correlation function of galaxies, or search for high redshift quasars, accurate star/galaxy
classification is required at the level of approximately 90%. At the faint end, every addi-
tional magnitude to which one can extend this accuracy limit buys one on order of two
to three times more classified objects in the catalog. Given the enormous resources put
into obtaining the survey data in the first place, it makes sense to fully investigate the
very latest technology when approaching the task of object classification, in the hope of
squeezing every last bit of scientifically useful information from the survey. This was our
motivation when designing and implementing the classification methods described in this
paper, which are currently being applied to the digitized scans of the Second Palomar
Observatory Sky Survey (POSS-II).

POSS-II (Reid et al. 1991) is more than 60% complete as of August, 1994, and will
eventually cover 894 fields spaced 5° apart in three passbands: blue (Illa-J + GG 395),
red (IlIa- F + RG610), and near-infrared (IV-N 4+ RG9). The typical limiting magnitudes
for point sources in the corresponding J, F, and N bands are 22.5™, 21.5™, and 19.5™,
respectively. While the photographic survey is still under way, ST Scl and Caltech have
begun a collaborative effort to digitize the complete set of plates (Djorgovski et al. 1992;
Lasker et al. 1992; Reid and Djorgovski 1993). So far, only a subset of the J, F, and
N plates have been scanned and processed. Both the photographic survey and the plate

scanning are estimated to be > 90% complete circa 1997. The resulting data set, the



Palomar-STScl Digital Sky Survey (DPOSS), will consist of ~ 3 TB of pixel data: ~ 1
GB/plate, with 1 arcsec pixels, 2 bytes/pixel, 203402 pixels/plate, for all survey fields in
all three colors. In conjunction with the plate survey, we are also conducting an intensive
program of CCD calibrations using the Palomar 60-inch telescope, using the Gunn-Thuan
grt bands. These CCD images serve both for magnitude zero-point calibration and object
classification purposes. The plate scans, when complete, will be the highest quality set of
digital images covering the entire northern sky produced to date.

The first scientific results obtained using DPOSS, and making use of the classification
methods described herein, are measures of blue and red galaxy counts in four POSS-II fields
near the North Galactic Pole (Weir, Djorgovski, and Fayyad 1994). Several additional
programs, including a high-redshift quasar search and measures of galaxy-galaxy angular
correlations, are in progress (Weir et al. 1994a).

In order to make most efficient use of DPOSS, and to generally facilitate its scien-
tific exploitation, Caltech Astronomy and the JPL Artificial Intelligence Group have been
engaged in a collaborative effort to integrate state-of-the-art computing methods for appli-
cation to DPOSS. The result of our joint effort is the Sky Image Cataloging and Analysis
Tool (SKICAT), a suite of programs designed to facilitate the maintenance and analysis of
astronomical surveys comprised of multiple, overlapping images. The classification tech-
nology described in this paper was developed as a part of this effort and is implemented
within SKICAT (Weir et al. 1994b).

Historical methods for classifying image features would preclude the identification of
the majority of objects in a DPOSS image, since these objects are too faint for traditional
recognition algorithms, or even object-by-object classification by eye. A principal goal
of SKICAT was to provide an effective, objective, repeatable, and examinable basis for
classifying sky objects at levels beyond the limits of previously existing technology. Of
course, due to statistical fluctuations of the data, one may never construct a classifier that
will be 100% accurate. One may, nonetheless, aim for the highest statistical accuracy
achievable to the greatest possible depth.

A particular difficulty in classifying DPOSS objects is that the scan images vary sig-



nificantly in terms of image quality (e.¢., background noise, point spread function shape,
etc.) both within and across plate boundaries. This created an important demand on the
classification method to be able to cope with this variation and produce consistent results
throughout the survey.

The two essential steps in performing automated object classification are to define the
space of discriminating attributes characterizing each object, then determine a means of
distinguishing objects within that space. The first step is key, as it determines upon what
information any classification will be based. We concentrated a significant amount of effort
in deriving a set of object attributes which effectively remove the intra- and inter-plate
variations described above. The second step is likewise very important, as there are any
number of ways, some much more powerful than others, of designing rules that divide the
parameters space into regions of like objects.

The approach we chose for this second step was one developed in the field of machine
learning, namely using decision tree induction algorithms. These methods are able to
automatically induce classification rules based simply upon user-supplied examples. This
approach not only provided us with the very effective star/galaxy classifiers that already are
being used to produce high-quality DPOSS catalogs, but it will easily allow future users
to re-train specialized classifiers (e.g., to identify galaxy morphology), or redo existing
star/galaxy classifications as more data become available and/or attribute measurement

technology improves.
1.1 Historical approaches

The problem of automatic object classification has been addressed for at least two decades,
with a variety of proposed solutions. The most basic approach is to plot one measured at-
tribute versus another and draw a line within that space best separating stars from galaxies.
Typically the chosen attributes are magnitude and some measure of object ‘peakedness’,
such as peak intensity, isophotal area, or intensity weighted first moment radius. Because
in that space point sources are generally distributed along a fairly well-defined stellar locus,

or ridge (see, e.g., Figure 3), such a discriminant function tends to be reasonably accurate



down to moderately faint magnitudes. The shortfalls of this approach are that defining the
classifier is very labor-intensive as well as subjective, and at faint levels, stars and galaxies
quickly blur together around the locus.

The next level of sophistication is to perform star/galaxy separation in a space defined
by some non-linear combination of parameters, rather than raw measurements. For exam-
ple, simply by plotting the logarithm of isophotal area [log(Area)] vs. magnitude, instead
of just object area, the stellar locus becomes more linear, making a separator much easier
to define and generally more accurate. For classifying objects from COSMOS digitized
plate scans, Heydon-Dumbleton, Collins, and MacGillivray (1989) found it optimal to dis-
criminate using one of three different pairwise plots depending on an object’s magnitude.
The three parameters they plotted versus magnitude were: G, a measure of how effectively
an image fills the ellipse fitted to its major and minor axes, for bright objects; log(Area),
for intermediate objects; and a derived parameter, S, which effectively measures the scale
of a best fit Gaussian to an object’s light distribution, for the faintest objects.

Heydon-Dumbleton, Collins, and MacGillivray (1989) also improved upon the standard
method by making the choice of discriminant line more objective. They measured the
statistical distribution of objects around the stellar locus as a function of magnitude,
setting the star/galaxy separation line some number of standard deviations above the
locus mean.

Picard (1991), in his analysis of COSMOS scans of POSS-II F plates, similarly mea-
sured the mean and width of the stellar locus in S vs. magnitude space, defining a new
parameter, ¢, corresponding to an object’s distance from the locus, normalized by the
width of the locus at that magnitude. He binned all the measurements for a given plate
and computed a value, ¢y, corresponding to three times the estimated width of the nor-
malized stellar locus. He would then classify all objects with ¢ less than ¢, as stars, the
rest as galaxies. Using this approach, he estimated that he was able to achieve on average
90% completion (fraction of all galaxies classified as such) and 10% contamination (fraction
of non-galaxy objects classified as galaxies) in his galaxy catalog down to a magnitude of

19.0™ in r.



The APM group (Maddox et al. 1990) took a slightly different approach to classifying
objects from their scans of J plates from the Southern Schmidt survey. Rather than mea-
suring the distance from the stellar locus in the space of one parameter vs. magnitude,
they used a metric involving ten different parameters: peak density, radius of gyration, and
image area above each of eight surface brightness levels. Two additional parameters were
used to help them distinguish blended objects from galaxies, as no deblending algorithm
was applied by the APM real-time software in the course of processing. Using this ap-
proach, APM reported a classification accuracy comparable to Picard’s at a By magnitude
of 20.0™.

A far different method for classifying objects from plate scans was pioneered by Sebok
(1979) in his Ph.D. thesis at Caltech. He introduced the concept of Bayesian classification
to the problem, estimating the most probable classification of each object based upon its
fit to a set of models. While this approach was effective, it was never widely applied to
Schmidt plate surveys subsequently.

Sebok’s classification method preceded the similar approach devised by Valdes and im-
plemented in modern versions of FOCAS (Valdes 1982). Valdes also applied a technique
premised on Bayesian probability theory, but more significantly, he introduced a measure-
ment procedure that results in extremely discriminating object attributes. By selecting
a number of objects in an image that are ‘sure-thing’ stars, FOCAS adds the rasters of
the central pixels of these objects to form an empirical estimate of the point spread func-
tion (PSF) for that image. Using the ‘resolution’ routine, FOCAS then fits a model to
each object consisting of a pure PSF conllponent and a blurred version of the same. The
best-fitting fraction of blurred component and its scale are the two attributes resolution
measures and uses for performing object classification. These attributes have never been
used in large scale digitized plate surveys to date because computing technology prevented
the repeated access to the pixel data, which this technique requires.

FOCAS provides a default set of rules specifying to which class different portions of
fraction vs. scale space correspond. Because the distribution of objects in the space of

these attributes tends to be relatively invariant from image to image (PSF variations are



effectively taken into account by the fitting process), the default rules are found to provide
excellent classification accuracy down to fairly faint levels for a wide variety of images. The
user has the option of changing these classification rules, but FOCAS does not provide a
way of allowing for more attributes in the rules, or a systematic way for determining a

new, optimal set of rules for a particular type of image.
1.2 The machine learning approach

Drawing upon these previous efforts, we chose to measure and calculate those object at-
tributes found to provide the best star/galaxy discrimination. However, unlike most pre-
vious approaches, we chose to apply modern methods from the field of machine learning
to determine the optimal discriminant functions, or set of classification rules, within the
multi-dimensional space of these measurements. The goal when applying these methods
is to provide enough examples of accurate classifications to the algorithm to allow it to
infer the rules for distinguishing objects in that space. An important advantage of this
approach is that one can typically feed a relatively large number of input parameters to the
algorithm, allowing it to determine classification rules more complex than those typically
devised by humans, generally as a result of examining pairwise plots of attributes. The
extra degrees of freedom provided by learning in multi-dimensional parameter space often
lead to substantially more accurate classifications. In addition, the rules are formed in an
objective, repeatable fashion.

Others have also begun exploring the use of new machine learning methods for the
purpose of object classification, perhaps most notably the APS group in Minnesota, who
have digitized the plates of the original POSS (Odewahn et al. 1992). They applied
artificial neural networks to the task of automatically inducing a set of classification rules
for objects in their catalog. We, too, experimented with neural nets; however, for reasons
discussed below, we chose to use a method involving decision trees, based on the work of
Fayyad (1991), for creating the production-line classifier implemented within SKICAT and
used on DPOSS.



2 Classifier Induction

For a detailed discussion of decision trees and associated methods of machine learning, we
refer the reader to Fayyad (1991) and Fayyad and Irani (1992). Below we include a brief
discussion and history of these methods, in particular those we utilize within SKICAT, in

addition to a comparison of this approach with neural networks.
2.1 Decision trees

A particularly efficient method for extracting rules from data is to generate a decision tree
(Quinlan 1986). A decision tree consists of nodes that represent tests on attribute values.
The outgoing branches of a node correspond to all the possible outcomes of the test at
the node, thus partitioning the examples at a node along the branches. For example, as
illustrated in Figure 1, at the top-most (root) node, the tree may branch left or right
depending on whether the object has log( Area) less than or greater than A,. In turn,
either of these branches may lead to a node that conditions on the same attribute, a
different one, or any combination of the same [e.g., “branch left if (mag < m,) and (¢ >
®,)"]. The final nodes in the tree, the leaves, would correspond to an actual classification:
star, galaxy, artifact, etc.

In Figure 2 we illustrate a portion of a much larger actual decision tree generated by
the O-Btree algorithm (described below) for performing star/galaxy classification. The
interval appearing above each node indicates the range in value of the attribute specified
in the node above that an object must meet for it to pass along that branch. The dark
branches lead to actual classifications. A full path from the root to any particular leaf
corresponds to a single classification rule. The number in parentheses within each leaf
indicates the number of training examples classified correctly by that rule.

A well-known algorithm for generating decision trees is Quinlan’s ID3 (Quinlan 1986)
with extended versions called C4 (Quinlan 1990). ID3 starts with all the training examples
at the root node of the tree. An attribute is selected to partition the data. For each value
of the attribute, a branch is created and the corresponding subset of examples that have

the attribute value specified by the branch are moved to the newly created child node. The



algorithm is applied recursively to each child node until either all examples at a node are
of one class, or all the examples at that node have the same values for all the attributes.
Every leaf in the decision tree represents a classification rule. Note that the critical decision
in such a top-down decision tree generation algorithm is the choice of attribute at a node.
Attribute selection in ID3 and C4 is based on minimizing an information entropy measure
applied to the examples at a node. The measure favors attributes that result in partitioning
the data into subsets that have low class entropy. A subset of data has low class entropy
when the majority of examples in it belong to a single class. For a detailed discussion of
the information entropy selection criterion see Quinlan (1986), Fayyad (1991), and Fayyad
and Irani (1992).

2.1.1 The GID3* and O-Btree algorithms

The attribute selection criterion clearly determines whether a “good” or “bad” tree is
generated by a greedy algorithm (sce Fayyad and Irani 1990 and Fayyad 1991 for the details
of what we formally mean by one decision tree being better than another). Since making
the optimal attribute choice is computationally infeasible, ID3 utilizes a heuristic criterion
which favors the attribute that results in the partition having the least information entropy
with respect to the classes. There are weaknesses inherent in algorithms like ID3/C4 due
to the fact that, for discrete attributes, a branch is created for each value of the attribute
chosen for branching. This overbranching is problematic since in general it may be the case
that only a subset of values of an attribute are of relevance to the classification task while
the rest of the values may not have any special predictive value for the classes. The GID3*
algorithm was designed mainly to overcome this problem, generalizing the ID3 algorithm
so that it does not necessarily branch on each value of the chosen attribute. GID3* can
branch on arbitrary individual values of an attribute and “lump” the rest of the values in a
single default branch. Unlike the other branches of the tree which represent a single value,
the default branch represents a subset of values of an attribute. Unnecessary subdivision
of the data may thus be reduced. See Fayyad (1991) for more details and for empirical

evidence of improvement.
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The O-Btree algorithm (Fayyad and Irani 1992) was designed to overcome problems
with the information entropy selection measure itself. O-Btree creates strictly binary trees
and utilizes a measure from a different family of measures that detect class separation
rather than class impurity. Information entropy is a member of the class of impurity
measures. O-Btree employs an orthogonality measure rather than entropy for branching.
For details on problems with entropy measures and empirical evaluation of O-Btree, the
reader is referred to Fayyad (1991) and Fayyad and Irani (1992). Both O-Btree and GID3*
differ from ID3 and C4 in one additional aspect: the discretization algorithm used at each
node to discretize continuous-valued attributes. Whereas ID3 and C4 utilize a binary
interval discretization algorithm, we utilize a generalized version of that algorithm which
derives multiple intervals rather than strictly two. For details and empirical tests showing
that this algorithm does indeed produce better trees, see Fayyad (1991) and Fayyad and
Irani (1993). We have found that this capability improves performance considerably in

several domains.
2.2 The RULER system

There are limitations to decision tree generation algorithms that derive from the inherent
fact that the classification rules they produce originate from a single tree. This fact was
recognized by practitioners early on (Quinlan 1986). The basic problem is that in even
a good tree, there are always leaves that are overspecialized or predict the wrong class.
For example, if there are any measurement errors in the attributes, the decision tree will
tend to fit to the noise and, hence, not generalize well to data that are out of sample.
The very reason that makes decision tree generation efficient (the fact that data is quickly
partitioned into ever smaller subsets) is also the reason why overspecialization or incorrect
classification occurs. It is our philosophy that once we have good, efficient decision tree
generators, they can be used to generate multiple trees, and from these, only the best
rules in each are kept. To implement this strategy, the algorithm RULER was developed
(Fayyad et al. 1992).

In multiple passes, RULER partitions a training set randomly into a training subset
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and test subset. A decision tree is generated from the training set and its rules are tested on
the corresponding test set. Using Fisher’s exact test (Finney et al. 1963), the exact hyper-
geometric distribution, RULER evaluates each condition in a given rule’s preconditions for
relevance to the class predicted by the rule. It computes the probability that the condition
is correlated with the class by chance!. If this probability is higher than a small threshold
(say 0.01), the condition is deemed irrelevant and is pruned. In addition, RULER also
measures the merit of the entire rule by applying the test to the entire precondition as a
unit. This process serves as a filter which passes only robust, general, and correct rules.

By gathering a large number of rules through iterating on randomly subsampled train-
ing sets, RULER builds a large rule base of robust rules that collectively cover the entire
original data set of examples (i.e., every example is classified by a rule). A greedy covering
algorithm is then employed to select a minimal subset of rules that covers the examples.
The set is minimal in the sense that no rule could be removed without losing complete
coverage of the original training set. Using RULER, we can typically produce a robust
set of rules that has fewer rules than any of the original decision trees used to create it,
and that generalizes better to out-of-sample data. The fact that decision tree algorithms
constitute a fast and efficient method for generating a set of rules allows us to generate
many trees without requiring extensive amounts of time and computation.

We implemented the RULER algorithm, in conjunction with GID3* and O-Btree,
within SKICAT for the purpose of inducing classification rules by example, and it was
used to produce the particular star/galaxy classifiers described subsequently. Throughout
this paper, we generally refer to our technique as decision tree induction and the rules
as decision trees. We simply note that in practice we are actually referring to the use of

decision trees in conjunction with the RULER tree pruning and combining algorithm.
2.3 Decision trees vs. neural nets

In order to compare against other learning algorithms, and to preclude the possibility that a

decision tree based approach is imposing a priorilimitations on the achievable classification

!The Chi-square test is actually an approximation to Fisher’s exact test when the number of test
examples is large. We use Fisher’s exact test because it is robust for both small and large data sets.
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levels, we tested several neural network algorithms for comparison. The results indicate
that neural nets achieve similar performance as decision trees. The learning algorithms
we tested were traditional backpropagation, conjugate gradient optimization, and variable
metric optimization of a two-layer perceptron (see Hertz, Krogh, and Palmer 1991 for an
excellent introduction to perceptrons and neural methods of computation). The latter two
are training algorithms that work in batch mode and use standard numerical optimization
techniques in changing the network weights. Their main advantage over backpropagation
is the significant speed-up in training time.

The results of our comparison between these approaches and decision trees can be
summarized as follows. The performance of the neural networks was a fairly unstable
function of the random initial network weights chosen prior to training and produced
accuracy levels on a sample test set of data varying between 30% (no convergence) and
95%, compared with a 94% accuracy level for a decision tree classifier. The most common
range of accuracy averaged between 76% and 84%. To achieve these levels of accuracy,
we had to perform multiple trials, each time varying the number of internal nodes in
the hidden layer, the initial network weight settings, and the learning rate constant for
backpropagation.

Upon examining the results of this empirical study, we concluded that the neural net
approach did not offer any clear advantages over the decision tree based learning algo-
rithms. Although neural networks, with extensive training and several training restarts
with different initial weights to avoid local minima, could match the performance of the
decision tree classifier, the decision tree approach still holds several major advantages. For
one, the tree is more easily interpreted than the weights in a neural network (although,
admittedly, a list of 20 rules that condition on up to eight parameters is not entirely trans-
parent either). More importantly, the learning algorithms we employ do not require the
specification of parameters such as the size of the neural net or the number of hidden
layers, nor do they call for random trials with different initial weight settings. There are,
in fact, very few free parameters. This makes the decision tree algorithm much easier to

implement as a generic tool within SKICAT. Also, the required training time is orders
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of magnitude faster than the training time required for a neural network program (i.e.,

seconds rather than dozens of minutes in some cases).
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3 Classification Attributes

In classification learning, the choice of attributes used to define examples is by far the
single most important factor determining the success or failure of the learning algorithm.
The attributes we use for classification are computed through a combination of image
processing and statistical measurement techniques. While they are not expected to be the
final advancement in this area, we did find them to provide the most discriminating and
uniform characterization of objects detected in DPOSS of any other set of attributes we
have encountered. This section provides a detailed description of these attributes and how

they are computed.
3.1 Base-level attributes

The eight attributes we use in object classification include a compendium of measures

found to be most useful and discriminating in previous surveys. They include:

MTot - the FOCAS total instrumental magnitude;

MCore - the core magnitude, measured from the brightest 3 x 3 pixel region in the object;
log(Area) - the log of the isophotal area of the object;

Ellip - the ellipticity;

IR1 - the intensity weighted first moment radius:

Yok Tk

IR1 = &=——,
2ok ik

where i is the intensity of pixel k£ and rj is its distance from the object’s centroid;

S - the parameter defined by Heydon-Dumbleton, Collins, and MacGillivray (1989) and
used by Picard (1991), which is a function of object area (a), core intensity (Icore,
the sum of the central 3 x 3 pixels), and the average intensity along the detection

isophote (p):
a

5= log[leore/(9 % p)]
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We chose FOCAS total magnitudes for our standard brightness measure for its decreased
sensitivity to the surface brightness threshold relative to aperture or isophotal magnitudes
(see Weir, Djorgovski, and Fayyad 1994). The other attributes measure the object’s sym-
metry or compactness in one way or another. FOCAS measures the two listed magnitudes
and IR1 directly, while the other three are easily computed from actual measurements.
We tested the use of a few additional object parameters, such as additional image mo-
ments, but found that they contributed little additional discriminatory power due to their
high correlation with one or more of these parameters. There is always the possibility that
future researchers will find that some unconsidered parameter helps result in significantly
improved classifications, and the machine learning software is fully capable of incorporat-
ing additional new parameters as they are discovered. For now, however, we found that
this list is sufficient.

Like previous researchers (e.g., Valdes 1982; Heydon-Dumbleton, Collins, and Mac-
Gillivray 1989; Picard 1991), we quickly determined that the distribution of these base-
level attributes does not exhibit the required invariance between different regions of a single
plate, much less across plates. This was exhibited by the low out-of-sample accuracy of
the classifiers we produced by training on these attributes alone. Their variability is also
clearly evident when one looks at the distribution of these parameters across or within
plates. For example, in Figure 3, we plot the distribution of log( Area) vs. MTot for two
20482 pixel sections of plates J380 and J442. We analyze each plate in image sections of
this size (which we call footprints) to help account for variations in image quality across
the plate (see Weir et al. 1994b for a full discussion of our plate reduction procedure).
Note that the stellar loci for these two footprints are nonlinear and do not overlay one
another. The implication is that a classifier optimized for one of the images would not
only be difficult to construct due to the nonlinearity of the stellar locus, but it would
certainly be less than optimal for the other image.

Raw measurements of object shape are inherently sensitive to the local background sky
level, seeing, and the pixel blurring induced by the scanning process. We therefore expect

these measurements to vary from plate to plate and even footprint to footprint. For any
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learning algorithm to be able to produce robust classifiers consistent across a large survey

area, different attributes are clearly required.
3.2 Derived attributes

As we discussed in Section 1, the resolution routine of Valdes (1982) provides two extremely
powerful classification parameters that, by construction, are very uniformly distributed
from image to image. In fact, a preliminary study by Weir and Picard (1991) indicated
the significant benefits of using the FOCAS approach to object classification on digitized
Schmidt plates. They found that using the PSF-fitting algorithm, one could extend the
limiting magnitude of classified Schmidt plate catalogs nearly a full magnitude beyond
previous limits achieved using historical approaches.

An essential task in employing the resolution technique, however, is to establish an
accurate estimate of the PSF for a given image. Only after this is obtained can the
resolution scale and fraction parameters be measured. The problem, therefore, naturally
breaks up into two separate steps: (1) star selection, the process of automatically deriving a
list of candidate stars for generating an empirical PSF template; and (2) final classification,
in which the resolution parameters, possibly along with others, are used for assigning all
objects to a particular class.

As previous surveys indicate, certain rather simplistic methods are perfectly adequate
for performing accurate star/galaxy separation at bright to moderately faint magnitudes:
a method involving PSF-fitting is necessary only when approaching a magnitude or so
within the detection limit. One need not approach this limit just to produce lists of stars
for empirically estimating the PSF template. Using a straightforward approach similar to
ones used for final classification in previous surveys, we were able to develop a technique for
robustly selecting candidate PSF stars, up to some limiting magnitude, uniformly within
and among plates.

The solution we employ is to fit, on a footprint by footprint basis, the stellar locus within
four separate parameter vs. magnitude projections, measuring four new attributes in the

form of the distance of each object from the stellar ridge in each dimension. We compute
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these so-called ‘revised’ attributes for the Mgy e, log(Area), IR1, and S parameters
described above. We find that in these new parameter spaces, the line distinguishing stars
from galaxies is roughly linear and does not vary much from image to image.

Measuring the distance of an object from the stellar locus first requires the ability to
delineate the location of the locus. The method we use for automatically tracking the
locus in an attribute vs. magnitude parameter space works by computing a histogram
of the attribute value in a set of 0.5™ bins spanning the instrumental magnitude ranges
15.5™—21.5™ in J;,st and 15.5™—20.5™ in Fj,4;. Objects brighter than the lower magnitude
limit are typically saturated and must be classified separately; and one has little hope of
forming accurate star lists using this type of method at magnitudes fainter than the upper
limit.

Our locus tracking algorithm next computes robust estimates of the mode and width
of the histogram for each magnitude bin. These mode values and their error estimates
(specified by the widths) are then fit by a fourth or fifth order polynomial as a function of
magnitude (see Figure 4). The fit is subtracted from each object, effectively bringing the
stellar ridge close to the abscissa on an attribute vs. magnitude plot. To assure an optimal
fit to the stellar ridge, the algorithm applies the same fitting and subtraction procedure
a second time, this time using a third or higher order polynomial. The optimal orders
used to perform the fit in the first and second iterations were found to be very consistent
across all DPOSS images and were determined separately for each of the four parameters.
These fitting parameters were ultimately hard-coded into the measurement process. Other
researchers found it useful to renormalize the new attribute values by the width of the
stellar locus. Our tests did not indicate significant variations in the widths of the revised
attribute distributions from footprint to footprint, so we eliminated this step.

The distribution of the revised parameters derived for the objects shown in Figure 3
appear in Figure 5. As demonstrated in this example, we find that the distribution of
objects in revised attribute space differs little between plates. The same holds true for the
other revised attributes we compute, as well.

Along with magnitude and ellipticity, the four revised attributes now form a six-
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dimensional parameter space in which we perform star/galaxy separation. To produce
our star selector classifier, we trained the decision tree induction software on a set of over
a thousand objects which one of us (NW) classified by eye from the digitized scans of
plates J380 and J442. Subsequent comparison with several hundred much more reliable
classifications obtained from CCD images indicated an error rate of less than 5% in the
training list constructed by eye.

The star selector we produced had an error rate of less than 3% percent on an out-
of-sample list of objects from the same two plates in the instrumental magnitude range
16.5™ to 19.0™. Subsequent application of the classifier on independent J and F data
resulted in lists of candidate stars in this magnitude range which we found to be more than
accurate enough for use in constructing the PSF template required by FOCAS resolution.
Whereas the typical footprint contains between 3500 to 4500 objects, the star selector
returns between 500 and 600 objects in the magnitude range listed above. This list of
candidate stars is provided to a FOCAS routine which averages the central nine by nine
pixels of each object to form the PSF template.

Armed with the template, one is then able to run the FOCAS resolution routine on
each object. As described previously, this routine determines the best-fitting scale (a) and
fraction () values, which parameterize the fit of a blurred (or sharpened) version of the

PSF to each object. The template used to model each object is of the form:

t(ri) = Bs(ri/a) + (1 = B)s(ri)

where r; is the position of pixel i, o is the broadening (sharpening) parameter, and 3 is
the fraction of broadened PSF. In turn, the resolution parameters are combined with the

previous six used for star selection in order to perform final object classification.
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4 Classification Results

In the course of processing each plate, the attribute measurement tasks described in the
previous section, including revised attribute measurement and star selection, are performed
fully automatically, as is the task of final object classification. However, in order to produce
the classifiers implemented within the DPOSS reduction programs, we were required at
some point to manually produce large samples of classified objects for training and testing
purposes. We describe how we produced these training samples below. The same steps
would be required of any user who might wish to construct their own, specialized classifier,
or to improve upon or monitor the quality of the existing classifiers on future data. We
follow this discussion with an examination of the results of applying these classifiers to

actual DPOSS data.
4.1 Classifier training

In order to obtain training data for classifying faint objects in DPOSS, especially those too
faint for recognition by human inspection of the plates alone, we made use of higher reso-
lution (and narrower field of view) CCD imagery obtained from the Palomar 60” telescope.
CCD images are being collected systematically in order to photometrically calibrate the
Survey (see Weir, Djorgovski, and Fayyad 1994); however, they serve this very important
role in the object classification process as well.

For classification purposes, the obvious advantage of a CCD image relative to a plate
is higher resolution and signal-to-noise ratio at fainter levels. By matching a CCD image
with the corresponding (small) portion of the plate that it covers, one can determine the
classes of objects too faint to classify by eye on the plate. By training learning algorithms
to classify these faint objects correctly using the attributes derived from the plate image,
SKICAT can conceivably classify objects from the survey that even humans would have
difficulty classifying.

The training and test data consisted of objects collected from four different plate fields
from regions for which we had CCD image coverage, as well as the by-eye classifications

used to construct the star selector described in the previous section. To adequately test

20



the reliability of the classifier, we divided the data into independent training and test sets
from different plates. The F plate training sample totaled 1239 objects from plates F381
and F442, while the J sample consisted of 2563 objects from plates J380 and J342.

We trained the decision tree induction and combining algorithms, O-Btree and RULER,
separately on the J and F data in order to produce independent classifiers. As a matter
of future research, one might attempt to train a classifier which combines the information
available for objects matched in multiple images, particularly in two colors. The results
of our training were a list of 84 rules for the F' plate classifier and 96 for the J’s. Each

” statement assigning a class to any object meeting its

rule is effectively an “if...then...’
conditions. For both classifiers, each rule conditions upon anywhere from three to six
different parameters. By construction, as described in Section 3.2.2, the rules will generate
a unique classification for any object within the training set’s multidimensional parameter

space.
4.2 Comparisons with training and test data

We tested the classifiers on a sample of 1539 objects from plates F380 and F382 and 589
objects from plates J381 and J382. Testing consisted simply of keeping track of the fraction
of objects classified correctly or incorrectly as a function of magnitude. It is noteworthy
that for a large fraction of these objects, an astronomer would have difficulty reliably
determining their classes by examining the corresponding digitized plate images. As an
example, see Figure 6, which depicts a star and galaxy as it appears on a plate and on a
CCD. These objects are representative of those with a magnitude at the limit of which we
would like to perform accurate star/galaxy separation. We have begun spectroscopic follow-
up observations of a sample of the small, faint objects, providing another independent check
on our faint classifications.

The accuracy we achieved from applying the classifiers on the training and test DPOSS
data sets appears in Tables 1 and 2. We estimate the accuracy by measuring the complete-
ness and contamination of a galaxy catalog formed from the sample data. The training re-

sults reflect the in-sample accuracy of the classifier, which is largely irrelevant and included
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only for completeness. The test set results are indicative of the accuracy of the classifier
on independent data and, therefore, reflect the true quality of the classifier. These results
are plotted in Figure 7.

Note that on our test data, we achieve approximately 90% completeness and 10%
contamination down to r ~ 19.6™ and g ~ 20.5™, or an equivalent B of approximately
21.0™. This reflects an accuracy rate comparable to what previous surveys attained, but
at magnitude levels 0.5™ to 1.0™ fainter. Our limited spectroscopic follow-up observations
to date are fully consistent with these results.

Though not listed here, we also computed the results of the J classifier on a test set
of data from the same plates on which the classifier was trained. The completeness and
contamination closely matched that of the test set from independent plates. Therefore, we
can expect the performance of the classifiers to be virtually the same for large catalogs of
objects from either the training or test sets of plates. We can help confirm this expectation
by comparing the consistency of classifications from plate to plate, as we do below.

We also confirmed the relative importance of the resolution attributes for object classi-
fication. When the same experiments were conducted using only the six attributes used in
star selection, the results were significantly worse. The error rates jumped above 20% for
0-BTree, above 25% for GID3*, and above 30% for ID3 at a magnitude of approximately
20.0™ in g. The respective sizes of the trees grew significantly as well. This clearly demon-
strates that although learning algorithms improve matters considerably by allowing one
to optimally and objectively make use of multiple parameters in the classification process,

the choice of parameters is still of first order importance.
4.3 Comparisons in plate overlaps

The tests described above indicate an overall classification accuracy of approximately 90%
at a magnitude of approximately 19.6™ in r and 20.5™ in g. If we assume that the
probability of an object being correctly classified is independent from plate to plate, this
would imply a consistency of classification of approximately 82%. This is the sum of the

probabilities of both classifications being correct (0.9%) or incorrect (0.12). Measuring
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the consistency of classifications from plate to plate across many different plates provides
some measure of the uniformity of plate classification accuracies, if not their actual levels
of accuracy. In Tables 3, 4, and 5 we list the consistency of object classification for the
large number of objects measured in each pair of overlapping plates of the same color and
overlapping plates of the same field but different color. Note that at each magnitude level,
the consistencies are in line with the accuracies listed in the previous section assuming
independent classifications.

Also notice that the consistency of the classifications between the pairs of plates on
which the classifiers were trained (F381/F442 and J380/J442) does not significantly differ
from the consistency of other measured pairs. This corroborates the notion that the clas-
sification accuracy for these plates as a whole is no better or worse than that for the test
plates, despite the fact that the classifiers were trained exclusively on objects from those

plates. In this sense, the classifiers are truly robust.
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5 Initial Experiments with Unsupervised Classification

We have also begun exploring the application and implementation of unsupervised classi-
fication techniques like Autoclass (Cheeseman et al. 1988) for the purpose of automated
machine discovery. Unlike the so-called supervised methods of classification that we have
described so far, where the computer learns how to distinguish user-specified classes within
the data, unsupervised classification consists of the computer identifying the statistically
significant classes within the data itself. For example, one could employ this type of method
to try to systematically detect new classes of objects within astronomical catalogs.

Our own initial experiments in applying Autoclass to DPOSS appear to confirm the va-
lidity and usefulness of this approach. After supplying Autoclass with the eight-dimensional
feature vectors from a sample of several hundred objects from our four fields, it analyzed
the distribution of the objects in this parameter space and suggested four distinct classes
within the data. Representative objects from these four classes are presented in Figure
8. Visually, the classes seem to divide into stellar objects, stellar-like objects with a low
surface brightness halo, and diffuse or irregular objects with and without a central core.
Its success at distinguishing these apparently physically relevant classes based just upon
eight image parameters suggests that far richer and innovative results may be in store
when ones matches multiple catalogs together, increasing the informational dimensionality

of the data set manifold.
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6 Concluding Remarks

Through the careful selection and construction of object attributes, and the application of
machine learning to derive sets of rules based upon them, we have been able to achieve
high rates of classification accuracy at levels up to a magnitude fainter than in previous
Schmidt surveys. By examining a set of four fields in two colors, we have verified that galaxy
catalogs produced from DPOSS using this technique appear to be consistently complete
and contaminated across multiple plates. In fact, in testing our classifiers on completely
independent plate data, we found them to produce 90% complete galaxy catalogs down
to an equivalent By magnitude of approximately 21.0™. There is no a priori reason why,
without any further work, these very same classifiers should not result in exactly the same
accuracy rates for all future high Galactic latitude DPOSS plates. However, we note that
by accumulating more and better overlapping CCD and plate data, one may be able to
train classifiers that are able to generalize even better.

A significant additional benefit of the classification approach we describe is that it
easily generalizes to the construction of any number of object classifiers for any purpose in
the future. Provided the astronomer is able to construct a suitably large enough sample of
objects for both testing and training, the same technology may be applied for a wide variety
of scientific purposes. To facilitate the construction of such sets, we have implemented a
tool within SKICAT that allows the user to display individual objects from a DPOSS plate
scan and assign a classification to each. One may also, as we have done, use the extensive
object matching technology within SKICAT to retrieve attributes from one set of catalogs
(e.g., plates) and classifications from their matched counterparts in others (e.g., CCDs).
It is our hope that with the availability of tools such as SKICAT and Autoclass, and the
demonstrated scientific value they add, such advanced data analytic techniques may see

more widespread use in the future,
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a

Figure 1: In this sample decision tree, one starts at the top node (root), following the
appropriate path to a final leaf (class) based upon the truth of the assertion at each node.

O

Figure 2: A portion of a much larger actual decision tree generated by the O-Btree algo-
rithm for performing star/galaxy classification. The interval appearing above each node
indicates the range in value of the attribute specified in the node above that an object must
meet for it to pass along that branch. The dark branches lead to actual classifications.
The number in parentheses within each leaf indicates the number of training examples
classified correctly at that node.

Figure 3: The distribution of log(Area) vs. MTot in sections of plates J380 and J442.
Note that the stellar locus is nonlinear and different for each plate. The locus shows similar
variance even within plates.

Figure 4: The log(Area) attribute and the locus fit to its distribution before each iteration
of the locus subtraction algorithm.

Figure 5: The distribution of the revised log( Area) vs. instrumental magnitudes in plates
J380 and J442 after the two-step locus fitting and subtracting process.

Figure 6: The top two images are from the scan of plate J442. Each object has a g
magnitude of approximately 20.0. The bottom two images are of the same objects but
from CCD frames. Our classifier correctly classified the left object as a star and the right
as a galaxy, despite their almost indistinguishable appearance on the plate. The higher
quality CCD images allowed us to provide reliable classifications to these objects which we
would otherwise be unable to use in classifier training or testing.

Figure 7: The accuracy of our star/galaxy separation technique is depicted by the complete-
ness (fraction of galaxies classified as such) and contamination (fraction of non-galaxies
classified as galaxies) measured within our test set of data.

Figure 8: Each row consists of representative objects from one of the four classes discovered
in the DPOSS data by Autoclass. It appears one can relate each type to physically, not
just statistically, distinct classes of objects.
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Training Set Testing Set
r mag | completeness contamination | completeness contamination
16.56 1.000 0.000 0.857 0.000
16.96 1.000 0.000 0.833 0.062
17.43 0.938 0.032 0.966 0.034
17.95 0.979 0.000 0.885 0.042
18.50 0.966 0.012 0.878 0.133
19.07 0.969 0.054 0.929 0.103
19.64 0.985 0.043 0.895 0.094
20.21 0.948 0.081 0.906 0.247
20.75 0.950 0.102 0.902 0.260

Table 1: The completeness (fraction of galaxies classified as such) and contamination
(fraction of non-galaxies classified as galaxies) for the samples of F plate objects used for
classification training and testing. The training samples are from plates F381 and F442.
The testing samples are from plates F380 and F382.



Training Set Testing Set
¢ mag | completeness contamination | completeness contamination
16.68 1.000 0.000 ** rk
17.17 0.857 0.077 Rk rx
17.67 0.935 0.033 1.000 0.000
18.18 0.956 0.030 1.000 0.091
18.69 0.989 0.021 1.000 0.050
19.21 0.963 0.037 0.966 0.097
19.73 0.954 0.019 0.925 0.098
20.25 0.964 0.024 0.892 0.065
20.77 0.891 0.039 0.861 0.151
21.30 0.806 0.167 0.796 0.204
21.81 0.848 0.200 0.774 0.250

Table 2: The completeness and contamination for the samples of J plate objects used for
classification training and testing. The training samples are from plates J380 and J442.
The testing samples are from plates J381 and J382. Too few objects of bright magnitude

were available to provide a statistically significant test below g = 17.5™.
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r mag | F380/F381 F380/F442 F381/F382 F381/F442 | Average
(8682) (1357) (9246) (3865)
16.23 0.933 0.947 0.880 0.886 0.912
16.56 0.952 0.967 0.957 0.964 0.960
16.96 0.952 0.839 0.968 0.971 0.932
17.43 0.972 0.870 0.937 0.925 0.926
17.95 0.964 0.983 0.957 0.984 0.972
18.50 0.941 0.919 0.961 0.969 0.948
19.07 0.893 0.899 0.921 0.875 0.897
19.64 0.825 0.855 0.826 0.852 0.840
20.21 0.746 0.773 0.761 0.749 0.757
20.75 0.750 0.738 0.681 0.743 0.728
21.25 0.746 0.753 0.718 0.775 0.748

Table 3: The fraction of objects classified consistently as a function of magnitude in the
overlap of the listed plates. These rates are consistent with the accuracies listed in Table
1. The number of objects tested in each overlap is listed below the field names.
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g mag | J380/J381 J380/J442 J381/J382 J381/J442 | Average
(8553) (1418) (9659) (3850)
15.73 0.548 0.533 0.623 0.538 0.561
16.20 0.913 0.846 0.899 0.860 0.880
16.68 0.977 1.000 0.954 1.000 0.983
17.17 0.976 0.964 0.975 0.962 0.969
17.67 0.962 0.972 0.979 0.972 0.971
18.18 0.975 1.000 0.985 0.964 0.981
18.69 0.958 0.984 0.970 0.962 0.968
19.21 0.915 0.927 0.942 0.890 0.918
19.73 0.857 0.911 0.881 0.874 0.881
20.25 0.755 0.812 0.780 0.820 0.792
20.77 0.688 0.759 0.717 0.690 0.713
21.30 0.673 0.671 0.717 0.665 0.681
21.81 0.736 0.701 0.706 0.661 0.701

Table 4: Same as Table 3, but for J plates.

3%




r+g Field

mag | 380 381 382 442 | Average
(7096) (8456) (7660) (7900)
1595 0.656 0.795 0.777 0.986 0.803
16.45 | 0.983 0.953 0.992  0.953 0.970
16.95 | 0.948 0.982 0.962 0.970 0.966
1745 | 0.977 0.964 0.966  0.951 0.964
17.95 | 0.981 0.964 0.986 0.948 0.970
18.45 | 0.940 0.952 0.967 0.950 0.952
1895 0.926 0.926 0.928 0.943 0.931
19.45 | 0.866 0.859 0.901 0.885 0.878
19.95 1 0.804 0.768 0.818 0.787 0.794
2045} 0.729 0.682 0.763 0.713 0.722
20.95( 0.718 0.681 0.684 0.690 0.693
21.45| 0.733 0.736  0.672  0.678 0.705

Table 5: The fraction of objects classified consistently as a function of average g and r
magnitude in the overlap of the J and F' plates covering the indicated fields. The number
of objects tested in each overlap is listed below the field names.
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Abstract

In our first analysis of the Digitized Second Palomar Observatory Sky Survey (DPOSS), we
examine galaxy counts on an overlapping set of four survey fields near the North Galactic
Pole, in both the J and F passbands. Through detailed simulations of a subset of these
data, we were able to analyze systematic aspects of our detection and photometric pro-
cedures, as well as optimize them. We discuss how we calibrate the plate magnitudes to
the Gunn-Thuan g and r photometric system using CCD sequences obtained in a program
devoted expressly to calibrating DPOSS. Our technique results in an estimated plate-to-
plate zero point standard error of under 0.10™ in g and below 0.05™ in r, for J and F
plates, respectively. Using the catalogs derived from these fields, we compare our dif-
ferential galaxy counts in g and r with those from recent Schmidt plate surveys as well
as predictions from evolutionary and non-evolutionary (NE) galaxy models. While we
find some significant differences between our measurements and others, particularly at the
bright end, we find generally good agreement between our counts and recent NE and mild
evolutionary models calibrated to consistently fit bright and faint galaxy counts, colors,
and redshift distributions. The consistency of our results with these predictions provides
additional support to the view that very recent (z < 0.1) and exotic galaxy evolution, or
non-standard cosmology, may not be necessary to reconcile these diverse observations with

theory.

keywords: galaxy counts, galaxy evolution, large scale structure, photometry, sky surveys



1 Introduction

1.1 Background

Counts of galaxies per magnitude per square degree, A(m), are among the most time-
honored observations in extra-galactic astronomy. At face value, however, they are also
among the most uninterpretable, as they represent the projection and convolution of so
many different physical effects. Galaxy counts are traditionally modeled assuming one
or more galaxy luminosity functions (LFs) for a few different galaxy types. Each type
is characterized by a model spectral energy distribution (SED). One evolves these galaxy
distributions and spectra with time over a grid of different luminosity evolution models
and cosmologies, in turn, ‘observing’ and counting the galaxies in a given bandpass after
applying the appropriate K-correction. In comparing actual measurements to predictions,
the standard null hypothesis has been a model with no evolution (NE) and a cosmology
of, e.g., go ~ 0 and H, ~ 50kms™!/Mpc. Such a set of parameters increases the volume
element and ages of present-day galaxies relative to higher ¢, and H, models, providing
larger numbers of faint counts and decreasing predicted evolutionary effects at a given
redshift.

In the context of such models, recent galaxy surveys indicate an excess of blue counts by
a By of 19.0™, or a mean redshift of only z ~ 0.1, increasing substantially with magnitude
(Maddox et al. 1990; Tyson 1988). Red counts also indicate an excess, though not of
the same degree as the blue (Koo and Kron 1992). Perhaps more interestingly, however,
the counts at brighter red magnitudes display very large variations between and even
within individual surveys (Sebok 1986; Picard 1991a). Near-infrared (K band) counts, on
the other hand, are less steep and appear to be more consistent with NE models (Cowie
et al. 1990; Djorgovski et al. 1994), as does the apparent redshift distribution of galaxies
(Broadhurst et al. 1988; Colless et al. 1990; Lilly and Gardner 1991).

A variety of physical effects have been proposed to account for these observations,
including dramatic galaxy evolution at low redshift (Maddox et al. 1990), significant evo-

lution of LF shape (Broadhurst et al. 1988), density evolution through galaxy mergers



and/or the disappearance of entire populations (Cowie, Songaila, and Hu 1991), large in-
homogeneities in the number density of galaxies on scales of (125h~'Mpc)? (Picard 1991a),
or even a non-zero cosmological constant (Fukugita et al. 1990). Any of these effects rep-
resents a fundamental, and largely ad hoc, revision of current standard models of galaxy
evolution, cosmogony, or cosmology. In the spirit of Occam’s razor, it is natural that one
should fully explore the consistency of the data with less intricate models before embracing
any of these alternatives.

With this goal in mind, Koo and Kron (1992) investigated the possibility that when
uncertainties in the observations and models are more fully taken into account, there is no
need for exotic evolutionary scenarios to simultaneously account for the observed number
counts, colors, and redshift distribution of galaxies. Their model significantly differs from
most others not only in that it attempts to fit all these data at once, but in how they add
the flexibility in the model to do so. They claim that in order to adequately represent the
variety and range of colors observed at all magnitudes, one must allow for a rich variety
of galaxy spectral types: i.e., no small number of classes dominates. Indeed, given the
wide variety of observed galaxy spectral energy distributions (SEDs), there is no obvious
or agreed upon standard breakdown of fundamental SED types. Consequently, in their
model, Koo and Kron try to fit the data by substituting one form of model complexity
(more galaxy types) for other, more traditional ones (evolution of LFs or non-standard
cosmology). They assert that allowing for a finer disaggregation of present-day galaxy
types is consistent, even justified, by direct observation, unlike these other methods of
adjusting the models to fit the data. Through trial and error, Koo and Kron adjust the
non-evolving LF of each of their specified classes so as to best fit the data. Adopting a
9o = 0, they claim to establish a proof of concept, by producing a set of predictions which
match the observations reasonably well with the addition of only relatively mild galaxy
evolution.

Koo, Gronwall, and Bruzual (KGB,1993a) took the Koo and Kron model one step
further, using a non-negative least squares optimization algorithm to find the best-fitting

set of LF's for a set of eleven non-evolving galaxy spectral classes. Each class is characterized



by age and star formation rate. They assume ¢, = 0.05 and H, = 50 km sec”!/Mpc~!.
With these ‘optimal’ LFs, their NE model matches the observations significantly better
than the Koo and Kron model, indicating even less need for rapid or complicated evolution
of galaxies or non-standard cosmology to explain the data.

Implicit in the KGB model is the assumption that our knowledge of the present-day LF
of galaxies, especially at a fine level of color-class disaggregation, is sufficiently uncertain
that it makes sense to float these, rather than any other, model parameters freely. Of
course there are independent derivations of color-integrated and color-dependent LFs (e.g.,
Loveday et al. 1992; Eales 1993; Lonsdale and Chokshi 1993; Metcalfe et al. 1991),
which could provide at least some measure of ‘reality check’ on the LFs generated by the
KGB model. Unfortunately, the other derivations display a significant amount of internal
discrepancy. Consequently, allowing for the apparent uncertainty in alternative estimates,
KGB claim that their LF solutions are generally consistent with independent observations.

KGB fit their model to a combination of observations from many heterogeneous sources.
They note that differences in magnitude zero points, detection efficiency, measurement pro-
cedure, and random and systematic photometric errors are all important, but are best left
for the model to account for rather than ‘correcting’ the data to some standard form
in advance. However, to accurately model these effects requires detailed knowledge of the
experimental procedure at a level seldom even realized by the observers themselves. There-
fore, in their analysis to date, KGB do not explicitly take these effects for different surveys
into account. Nonetheless, it is these uncertainties, in the random and systematic effects
characterizing each survey, that fundamentally prevent us from more usefully constraining
the models. Uniform and better understood data, even if not of significantly higher quality,

are crucial.

1.2 The Digitized Second Palomar Observatory Sky Survey (DPOSS)

In 1985, the Oschin Schmidt 48-inch telescope at Palomar was dedicated to work on the
Second Palomar Observatory Sky Survey (POSS-II, Reid et al. 1991). This photographic

survey was prompted by the requirements of the space observatories, notably IRAS and



HST, as well as the general desire to provide a newer epoch survey of the northern sky to
complement both the original POSS and the recent, higher-quality SERC/ESO surveys of
the southern skies. POSS-II, which is more than 60% complete as of August, 1994, will
eventually cover 894 fields spaced 5° apart in three passbands: blue (Illa-J + GG 395),
red (IlIa-F + RG610), and near-infrared (IV-N + RG9). The typical limiting magnitudes
for point sources in the corresponding J, F, and N bands are 22.5™, 21.5™, and 19.5™,
respectively.

While the photographic survey is still under way, ST Scl and Caltech have already
begun a collaborative effort to digitize the complete set of plates (Djorgovski et al. 1992;
Lasker et al. 1992; Reid and Djorgovski 1993). So far, only a subset of the J, F, and
N plates have been scanned and processed. Both the photographic survey and the plate
scanning are estimated to be > 90% complete circa 1997. The resulting data set, the
Palomar-STScI Digital Sky Survey (DPOSS), will consist of ~ 3 TB of pixel data: ~ 1
GB/plate, with 1 arcsec pixels, 2 bytes/pixel, 203402 pixels/plate, for all survey fields in all
three colors. ST Scl will provide an astrometric solution for each plate accurate to within
approximately 0.5 arcsec RMS over scales less than a degree. In conjunction with the
plate survey, we are also conducting an intensive program of CCD calibrations using the
Palomar 60-inch telescope, using the Gunn-Thuan gri bands. These CCD images serve
both for magnitude zero-point calibration and object classification purposes. The plate
scans, when complete, will be the highest quality set of digital images covering the entire
northern sky produced to date.

In order to make most efficient use of these data, and to generally facilitate the exploita-
tion of POSS-1I, Caltech Astronomy and the JPL Artificial Intelligence Group have been
engaged in a collaborative effort to integrate state-of-the-art computing methods for the
scientific utilization of DPOSS. The traditional means of extracting useful information from
imaging surveys is through the construction of object catalogs. Thanks to developments
in the fields of pattern recognition and machine learning, in addition to raw computing
power, it is now possible to reliably construct such catalogs objectively and automatically

with a higher degree of accuracy than ever before. The result of our joint effort is the Sky



Image Cataloging and Analysis Tool (SKICAT), a suite of programs designed to facilitate
the maintenance and analysis of astronomical surveys comprised of multiple, overlapping

images.
1.3 The Palomar Northern Sky Catalog (PNSC)

The result of applying SKICAT to DPOSS will be the Palomar Northern Sky Catalog
(PNSC), which when completed, is expected to contain 2 5x 107 galaxies, and > 2 x 10°
stars, in three colors (photographic JFN bands, calibrated to CCD gri system), down to
the limiting magnitude equivalent of B ~ 22™, with star-galaxy classifications ~ 90 — 95%
accurate down to the equivalent of B ~ 21™. The catalog will be continuously upgraded
as more calibration data become available. It will be made available to the community via
computer networks and/or suitable media, probably in installments, as soon as scientific
validation and quality checks are completed. Analysis software (parts of SKICAT) will
also be freely available.

A small portion of the PNSC covering a region near the North Galactic Pole is already
complete, providing an early indication of the scientific potential of the full catalog. In
this paper, we report on the first detailed analyses performed using these data, in the
form of galaxy counts in the J and F passbands. In short, we find the data to be of
high enough quality and sufficiently well understood to provide useful new constraints to
galaxy evolution models. In addition, their consistency with existing NE models provides
yet more evidence that elaborate evolutionary scenarios or non-standard cosmology may
not be necessary to account for the observations.

The single greatest known source of systematic error in our measured number counts is
uncertainty in the instrumental to calibrated-magnitude transformation. In brief, the pro-
cedure we use to calibrate the survey is first to adjust each plate’s instrumental magnitudes
by an offset to match a survey-wide instrumental system. Next we apply a linear trans-
formation to convert the survey instrumental J and F magnitudes to the Gunn-Thuan ¢
and r system. For analysis purposes, we restrict our galaxy catalogs to 16™ < g < 20.5™

and 16.5™ < 7 < 19.6™, so as to remain within the well-calibrated, non-saturated, and



well-classified (~ 90% complete and ~ 10% contaminated) portion of each catalog. In this
magnitude range, we estimate that the systematic plate-to-plate RMS error in zero point
offsets are under 0.10™ in g for J plates and below 0.05™ in r for F plates.

In the section that follows, we provide a more complete description of the plate and
CCD data and the measurement procedures used in our analysis. Section 3 describes the
methodology and consistency of our technique for photometrically calibrating the plates.
In Section 4, we compare our counts with those of other recent Schmidt plate surveys in

addition to theoretical models. In the final section, we discuss these results.



2 The Data

Our survey is derived from four PQSS-I1 survey fields measured in both F and J passbands.
In addition, we have obtained extensive CCD coverage of small fields within these plates.
Below we provide characteristics of the photographic and digitized plate data, as well as the
methods we used for detecting, measuring, and classifying plate objects. This is followed

by a description of the CCD data and our measurement procedures for them.
2.1 Plate data
2.1.1 Photographic plates

The four POSS-II fields used in this study (numbers 380, 381, 382, and 442) were chosen
for their proximity to the North Galactic Pole, where many previous galaxy surveys have
been performed, and because they were the first digitized plates available in two colors
and for which we had CCD coverage. The fields are depicted in Figure 1. Also noted in
the figure are the locations of the CCD sequences obtained within these fields, indicated
by the number of the Abell cluster on which they were centered (e.g., A1694) and/or the
CCD field number (e.g., F6) from an ad hoc numbering system we adopted for our CCD
fields.

The plate number, center location, approximate photographic sky density, exposure
time, sky transmission quality, grade assigned to, and estimated limiting magnitude in g
or v of each of our survey plates appears in Table 1. The grade reflects the quality of
the plate in terms of depth, seeing, number of artifacts (e.g., plane trails), etc., as judged
by the POSS-II quality control staff. A and B-grade plates are automatically accepted in
the POSS-II, while C-grade and lower observations are typically repeated. What we term
J plates actually result from the combination of Kodak Ill-aJ emulsion with the GG395
filter, whereas F' plates are from III-aF emulsion combined with the RG610 filter.

Each Oschin Schmidt plate is 14 inch square in size, corresponding to a 6.6° x 6.6° field
of view. The dashed circles in Figure 1 centered within each plate field have a diameter of

6° and enclose the relatively unvignetted portion of each plate. Tritton (1983) measured



the vignetting function of the U.K. Schmidt Telescope, which should be similar to that for
the Oschin, and found that the vignetting correction was at most 0.03™ at a radius of 3°,
rising to a level of 0.25™ in the plate corners. DeCarvalho (1994, priv. comm.) has begun
a study of the vignetting function of POSS-II plates using DPOSS scans and verifies these
results.

Tinney (1993), in his analysis of POSS-II F and N plates, was unable to detect vi-
gnetting effects in his catalogs, which were restricted to a 3° radius. We also confine our
photometric analysis to objects within this radius (also avoiding the sensitometry spots)
on each plate, with a minor exception related to field 442 noted below. This restriction
would have to be relaxed in order to cover a continuous solid angle of sky using multiple
plates. However, to use these data reliably would require an empirical estimate of the
actual vignetting function for the Oschin Schmidt, which we will only be able to mea-
sure when a larger number of digitized plates are available. We therefore restrict, for the
time being, our analysis to the unaffected portions of each plate until such an empirical
correction is obtained. We also excluded regions surrounding bright stars, so as to avoid
contaminating our catalogs with artifacts mistakenly classified as galaxies, or true galaxies
with very poorly measured magnitudes due to stellar contamination.

The plate holder on the Oschin Schmidt is nitrogen flushed during each exposure to
help assure uniform hypersensitization across the plate. In their photometric analysis of
U.K. Schmidt plates, the APM group (Maddox, Efstathiou, and Sutherland 1990) found
that plates observed in this fashion suffered much less variation in response across the field.
Unfortunately, only eight of their plates were observed using this method; consequently,
they had to go to significant effort to remove this large source of field variation in their
survey. All of the POSS-II plates were obtained using nitrogen flushing.

Additional, non-vignetting field variations at the level of a few percent of sky are still
present within individual DPOSS images and show up most clearly when analyzing binned
versions of the plate scans. However, without a sufficient number of plate scans in hand,
it is difficult to determine whether the observed sky background variations are additive

or multiplicative in nature, due to zodiacal light, uneven emulsions, uneven hypering or
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developing, or to a limited degree, actual Galactic (extragalactic?) sky background varia-
tions on scales less than a degree. For our analysis, like that of Tinney (1993) and Picard
(1991b), we do not correct for these effects, preferring to wait until we have better under-
standing of their origin before taking them into account. Instead, we verify below that our
plate-to-plate consistency, even while ignoring these effects, is within acceptable limits for
our scientific purposes. Nonetheless we note that a better determination of the source of

these background variations may be an interesting subject of future research using DPOSS.

2.1.2 Digitized scans

The plate scan data provided by ST Scl are in the form of images 23, 040 x 23, 040 pixels in
size, scaled in arbitrary photographic density units. Each pixel is one square arcsecond in
size with a dynamic range of two bytes. Each scan includes an image of the 16 sensitometry
spots that appear in the southwest corner of each POSS-II plate. The first step in reducing
the digitized plate data is to fit a characteristic curve, or so-called ‘HD’ curve, to these
spot levels, providing a density to intensity transformation for the entire plate.

The mathematical formula we use to fit the measured plate densities (D) to relative

intensities (7) is:
P(D)
(Ds - D) x (D7 - D)

logI = (1)

where P(D) is a polynomial function of the density, and the saturation and toe densities,
Dg and Dr, are those corresponding to fully exposed and unexposed portions of the plate,
respectively. An example of such a fit for plate F442 appears in Figure 2. The polynomial
coefficients, together with the toe and saturation values, establish the conversion applied
to each pixel value.

There is a long history to efficiently modeling the HD curve. The method employed
by ST ScI (Russel et al. 1990) in constructing their Guide Star Catalog, for example,
involves a more complicated formula and averaging many plates together. By their own
admission, however, they find the more complicated expression to be overkill for the linear
part of the curve of most interest. In addition, we found considerable variation of the curve

among different plates, requiring independent fits. We find the instrumental magnitudes
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resulting from our HD fits to be extremely consistent from plate to plate, in the sense of
only requiring a single zero point offset to match them. This provides, in our opinion, the

most important test of the validity of our linearization scheme.

2.1.3 Object detection and measurement

The three most critical elements of plate processing are detection, photometry, and clas-
sification. By using the Faint Object Classification and Analysis System (FOCAS, Jarvis
and Tyson 1979; Valdes 1982) for image detection and measurement, SKICAT, the sys-
tem we designed to process and manage the DPOSS plate scans, is able to reach close to
the faintest reliable limits of the plate scans, i.e., down to a typical equivalent limiting
B magnitude of ~ 22™ for galaxies. In addition, by measuring quasi-asymptotic rather
than isophotal magnitudes, using local sky estimates from annuli surrounding each ob-
Ject, and adapting the measurement thresholds within and across each plate to adjust for
differences in sky level, noise, and pixel-to-pixel correlation, we are able to obtain very
consistent photometry within and across plate boundaries.

SKICAT automatically analyzes each plate as a set of 13 x 13 overlapping ‘footprint’
images of 2048 pixels each. Not only is this approach computationally convenient, but it
provides greater sensitivity to position-dependent plate effects. It also facilitates quality
control via the systematic comparison of the overlap regions. SKICAT applies the FOCAS
utilities to each of these footprints in order to construct the full plate catalog. First
SKICAT robustly estimates sky and sky sigma values for each footprint, providing values
that are quite accurate even when relatively large and bright sources exist in the image.
Seeded with these values, the FOCAS detection and background estimation procedures are
found to work well on the footprints. We were able to test the accuracy of this approach
by applying it to the simulated plate images described in Appendix A. There we discuss
how we created the simulations and how we were able to use them to optimize and asses
our choice of FOCAS detection and measurement parameters.

The FOCAS detection algorithm works by tracking each image area above some thresh-

old comprising some minimum number of pixels. In Appendix A, we describe in detail how
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we determine and adjust this threshold in order to achieve uniform sensitivity within and
between plates. The local sky brightness for each object feature is measured using the
FOCAS ‘sky’ command, which calculates the median pixel value in an annular region sur-
rounding each feature, avoiding pixels that are within the detection isophote of another
feature. The accuracy and systematic effects of this sky measuring algorithm are likewise
addressed in Appendix A.

After obtaining the sky estimate, additional attributes for each feature are measured
using the FOCAS ‘evaluate’ routine. The total number of measurements number more
than 30. Three different types of magnitudes are measured: aperture, isophotal, and

‘total’. Each magnitude (m) is instrumental and computed according to:
m = 30.0-25log L

where L is the luminosity, or sky-subtracted integrated intensity for each measurement.
The offset of 30.0 is arbitrary and was chosen to make the instrumental magnitudes approx-
imate the final calibrated values within a magnitude or two. The aperture magnitudes are
computed using a five arcsec radius. The isophotal magnitudes measure the sky-subtracted
flux within the detection isophote. The so-called FOCAS total magnitudes are computed
by ‘growing’ the detection isophote out a pixel at a time in all directions until the total
area is at least twice the original, then calculating the sky-subtracted flux within that area.
This magnitude is meant to provide a flux measurement less biased with respect to surface
brightness profile, approximating something like an asymptotic or true total magnitude.
The cost of decreased systematic error in this measurement is greater sensitivity to sky
subtraction, and hence, increased random error (relative to isophotal or aperture magni-
tudes). Appendix A provides a detailed comparison of the accuracy of these three types of
magnitudes for both stars and galaxies in the. DPOSS scans. For the compelling reasons
outlined there, we have chosen to use FOCAS total magnitudes in our analysis.

Each object was deblended using the FOCAS ‘splits’ command. Effectively, this rou-
tine runs the detection algorithm on every detected object, but using successively higher

thresholds. ‘Islands’ detected at a given threshold are entered into the catalog as new
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objects, and all attributes are remeasured for them. The ‘parent’s’ flux is divided between
the ‘children’ according to the ratio of isophotal fluxes obtained using the higher threshold.
This process continues recursively until no more islands are detected.

Improvements can certainly be made to the deblending process so as to improve the
quality of the photometry of the deblended objects, to better take deblending into account
when matching overlapping plates, and to handle the extreme crowding conditions to
be found in lower Galactic latitude POSS-II plates. Nonetheless, we find the present
implementation to be more than sufficient even for detailed analyses of higher latitude
plates, and that it at least represents a step above reduction without the use of deblending
at all, as in the case of the APM survey.

The J2000 RA and Dec of the central pixel of each object is calculated using trans-
formation coeflicients provided by ST Scl. We have found these to provide ~ 1.0 arcsec
RMS accuracy after correcting for systematic deviations on scales less than about a square
degree. In the future, ST ScI will provide more accurate plate solution coefficients that

should provide better that 0.5 arcsec accuracy on larger scales.

2.1.4 Object classification

The accuracy of star/galaxy separation generally determines the effective limiting mag-
nitude, in terms of scientific usefulness, of imaging surveys. This limit is, in very many
respects, more important than the object detection limit in terms of its impact on the
variety of programs for which the data may be used. For this reason, we concentrated
a great deal of effort in evaluating the effectiveness of various object classification algo-
rithms. A principal goal of SKICAT was to provide an effective, objective, repeatable,
and examinable basis for classifying sky objects at levels beyond the limits of previously
existing technology. A full description of our classification procedure is beyond the scope
of this paper and will be published separately (Weir, Djorgovski, and Fayyad, in prep.).
Here we provide just a sketch of our methodology and results.

Historical methods for classifying objects on plate scans would preclude the identifica-

tion of the majority of objects in each DPOSS image, since they are too faint for traditional
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recognition algorithms, or even manual inspection. These methods generally involve algo-
rithms for separating stars from galaxies within some low dimensional but relatively well
discriminating parameter space (e.g., magnitude vs. first moment radius), or within a
higher dimensional, but less discriminatory, space of attributes.

SKICAT’s procedure for object classification improves upon historical techniques in
two ways. First, it measures and utilizes a more powerful set of object attributes; sec-
ond, it benefits from recent developments in machine learning that enable the computer to
automatically determine near-optimal rules for distinguishing objects within high dimen-
sional parameter spaces. In particular, SKICAT utilizes the GID3* and O-Btree decision
tree induction software (Fayyad 1991; Fayyad and Irani 1992; Fayyad and Irani 1993),
together with the Ruler system (Fayyad, Weir, and Djorgovski 1993) for combining mul-
tiple trees into a robust collection of classification rules. These algorithms work by using
measurements of a training set of classified objects and inferring an efficient set of rules
for accurately classifying each example. The rules are simply conjunctions of multiple
“if...then..” clauses, which condition upon, in our case, any of eight different object pa-
rameters to determine an object’s classification. The real advancement in using this type
of classifier relative those used in most large-scale surveys to date is twofold: first, we are
able to condition upon a larger and more diverse set of attributes; second, we allow the
computer to decide what are the optimal number and form of the rules.

We also experimented with neural nets, and found their performance to be no better
than that of decision trees, with the additional disadvantages of slow training and difficulty
in interpreting their results (but see Odewahn et al. 1992 for a related work). Decision
trees are constructed very quickly, and there is never a problem with convergence, unlike
with neural nets.

We created separate sets of classification rules for objects from J and F plates. We used
the CCD calibration data, described below, which generally have superior image quality, to
construct the training sets used to train the plate object classifiers. Classifications derived
from the CCD data, more reliable than “by eye” estimates from the plates themselves, were

matched to plate measurements to form the training sets. For attributes we used a set of
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robust, renormalized object parameters that we found to be distributed in a stable fashion
within and across plates. These attributes included a variety of object brightness and shape
parameters, in addition to measures of the fit of each object to a locally derived point spread
function (PSF). By training the algorithms to classify based on these attributes, we were
able to nearly completely remove the effect of PSF variation across a given plate, or even
between different plates. Our average accuracy of star-galaxy classifications as a function
of magnitude was determined from tests using independent CCD-classified plate data. In
both the J and F bands, the accuracy drops below ~ 90% at about the same equivalent
magnitude level, B ~ 21.0™ (see Figure 3). This is ~ 1™ above the plate detection limits,
and nearly 1™ better than what was achieved in the past with similar data. This increase
in depth effectively doubles the number of galaxies available for scientific analysis, relative

to the previous automated Schmidt surveys.
2.2 CCD data

We are conducting a systematic program on the Palomar 60-inch telescope to obtain CCD
sequences for use in conjunction with DPOSS. The CCDs are used for photometric calibra-
tion as well as for training data to construct the plate object classifiers described above. To
date, we have concentrated these observations on Abell clusters and random fields within
selected POSS-II fields in the North and South Galactic Caps. These fields were targeted
for initial analysis due to their overlap of previous surveys (e.g., that by Picard 1991b),
and because they formed two large, contiguous mosaics covering the highest latitude plates
in both the North and South. Higher latitude plates are of initial interest in such surveys
because they suffer less from crowding effects and are, hence, easier to analyze.

The CCD sequences are being obtained using the Gunn g, r, i photometric system
(Thuan and Gunn 1976), for calibrating the J, F, and N plates respectively. These
CCD passbands were chosen to provide a reasonable match to the emulsion plus filter
combinations of these plates (see Figure 4), and they do so better than any other standard
CCD photometric system. The primary disadvantages of the Gunn system are that the

standard stars are few, bright, and do not span a large range in color. Nonetheless, we
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found the standards sufficient for calibrating our CCD data to the precision and accuracy
necessary for our analysis of DPOSS. We, therefore, chose the Gunn system in order to
reduce the importance of a color term when calibrating the plates to a CCD standard. The
plate g magnitudes may subsequently be transformed to the more standard B; passband
using the relation

B;=¢+039+037(g—-r) (2)

from Windhorst et al. (1991), which is roughly equivalent to By ~ g + 0.5 mag for a faint
field field galaxy of average color.

The CCD exposures were typically 1800 seconds in ¢, 1200 in 7, and 600 in ¢ using an
un-thinned Tektronix CCD (CCD11). This is a 10242 pixel device with an inverse gain
of ~ e~ /ADU, read-out noise of 5 e~, and a pixel size of 24y, resulting in a field of view
of 6.35' X 6.35'. Starting in September 1992, we began testing and using CCD16, which
is a thinned version of the same Tektronix chip. The quantum efficiency of CCD 16 is
twice that of CCD 11 in g and 1.6 times higher in r. We aimed for sufficient depth in
our observations to allow for an SNR of at least 10 in the photometry of objects at the
classification limit of the survey, or effectively 21.0™ in Bj.

On photometric nights, we would observe from 10 to 12 different standard stars at a
range of air masses and color. On non-photometric nights with adequate (< 2.5”) seeing,
we would take longer exposures in each passband, following up with shorter exposures of
the same field on photometric nights in order to calibrate them. In the analysis presented in
this thesis, we have only used CCDs obtained on nights recorded as apparently photometric
in the observing log book. We subsequently verified the consistency of the photometry for
each of these nights by examining the residuals of the standard stars, requiring that they
demonstrate no temporal trends and have a standard deviation below 0.03™. Every night
that we recorded as clear at the time of observation, and that we have reduced to date,
has met these criteria.

We reduced the CCD data using the standard CCDRED facility within IRAF. The
procedures include debiasing, edge-trimming, and flat-fielding. In order to achieve a flat-

field variation of less than 1% across each field, we followed a three-step process: division
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by a normalized image of the illuminated dome (dome flat), to account for pixel-to-pixel
variations; division by a blurred, dome-flattened twilight sky image (sky flat), to take out
large-scale variations; and a blurred, dome and sky-flattened average of the deep exposures
taken during the night, to take out the remaining large-scale variations. The latter averages
were derived by normalizing each exposure by its sky brightness and ignoring values in the
image stack deviating more than 2.5 standard deviations from the mean for that pixel
(sigma clipping).

We calibrated the CCD observations independently each night using the IRAF AP-
PHOT package. We typically took three exposures of each standard star per frame, aver-
aging the aperture magnitudes to provide a mean and standard error per observation. Each
night we solved for the maximum likelihood values of the coefficients Ay, Ay, By, By, C,,

and C, in the system of equations:

T = Tinst +2.5l0gt, + A, + B, sec z, + Crg—T1)

g = Ginst +2.5logt, + Ay + Bysecz, + Ce(g — 1),

where 7,5 and ¢, are the instrumental magnitudes, ¢, and t; are the exposure times,
and 2, and 2, are the airmasses at which the observations were made. Applying these
coefficients, we measured a standard error typically less than 0.02™ in g and r for our
calibrated standard stars each night.

As in the case of plate images, we measured FOCAS total magnitudes from the CCDs.
The surface brightness threshold applied for both ob ject detection (with a minimum area
requirement of six contiguous pixels above the threshold) and isophotal magnitude mea-
surement was 24.6 magnitudes per square arcsecond in both g and r. This value represented
an approximate average of the plate thresholds determined after reducing and bootstrap
calibrating them using a threshold corresponding to simply a constant number of stan-
dard deviations above the sky. Qur estimate of the calibration uncertainty in the resulting
CCD galaxy catalogs down to a magnitude limit of 20.5™ in ¢ and 19.5™ in r, derived by
comparing independent observations of the same fields, is approximately 0.05™ per CCD.

We found FOCAS’s built-in classifier to provide very accurate results on the CCDs down
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to the plate detection limit, which is our magnitude limit of interest. We were, therefore,
able to let FOCAS automatically classify each object, with just a follow-up check by eye,

producing excellent quality data without the need for much human interaction or more

sophisticated classification algorithms.
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3 Plate Calibration

The method we use to photometrically calibrate the plate data is a two step process,
described in detail in Appendix B. Briefly, the steps consist of first transforming the
plate magnitudes onto a common instrumental system (we find that a simple offset for
each plate suffices), then linearly transforming the instrumental F and J magnitudes to
7 and g, respectively. We demonstrate the accuracy of our calibration procedure with

plate-to-plate comparisons of calibrated magnitudes and number counts.
3.1 Calibrated plate-to-plate magnitude comparisons

As one check on the consistency of our plate photometry, we compared calibrated plate
magnitudes with one another in the four plate overlaps. Figures 5 and 6 plot r and g
magnitude differences vs. mean magnitudes for these regions. Tables 2 and 3 quantify
these results. In the magnitude range 15.0™ < r < 19™, the mean offset is —0.003™ with
standard deviation 0.039™. In the range 14.5™ < g < 19.5™, the mean difference is 0.008™
with standard deviation 0.045™. These results are consistent with error estimates based on
comparing calibrated plate to CCD magnitudes, which imply a systematic plate-to-plate
RMS error in zero point offsets of under 0.10™ in g for J plates and below 0.05™ in r for
F. The non-systematic RMS error in a single plate measurement, as measured using both

plate/CCD and plate/plate overlaps, is approximately 0.15™ in r and 0.21™ in g.
3.2 Internal consistency of galaxy counts

As an additional check on the consistency of our photometric calibrations, we compared
galaxy number counts, A(m), for each of the plates in our four survey fields, as depicted in
Figure 7. Of particular note is the consistency of the level and slope of the counts between
plates of a given passband, especially relative to previous surveys (e.g., Sebok 1986; Picard
1991a).

In Figure 8 we plot the average of the counts from the four survey plates in each
band (solid line) versus the counts resulting from alternative plate-to-CCD calibration

transformations. The dotted lines surrounding the solid line represent the average result of
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adjusting the slope of the linear calibration by one empirically-estimated standard deviation
both up and down. After adjustment, in both cases, we re-derived a best-fitting intercept
corresponding to that slope. We believe these dotted lines bracket our true uncertainty in
the average counts due to plate-to-CCD calibration uncertainties. The differences observed
between individual plates in Figure 7 are readily explained due to magnitude-zero point
errors at the level implied by this uncertainty and Poissonian counting statistics. Large
scale structure presumably, at some level, also accounts for some variation.

As an additional check on the systematic effects of the plate-to-CCD magnitude trans-
formation process, we compare the counts derived after applying both a simple offset
(zerot! order) and cubic calibration transformation. As noted in Appendix B, the offset
transformation produces magnitudes very similar to those from linear calibration, hence,
the implied counts are very similar. On the other hand, the cubic transformation results in
significantly different results in the r band, yielding a slope difference of 0.05 mag/dex. We
reject the cubic transformation on theoretical grounds (if the HD curve is fitted properly,
the appropriate magnitude transformation should be linear) and empirically, largely be-
cause of the instability it produces in stellar color-magnitude diagrams. Had we ignored or
never investigated the latter effect, however, we might very well have followed the standard
practice of previous surveys of fitting high order calibration curves, in order to account for
anticipated residual nonlinearities in the plate data. Figure 8 highlights the point that such
seemingly unimportant details as choice of polynomial order can result in large systematic
errors in scientifically relevant measurements several steps down the reduction chain. The
appearance of such fragility in the results should have an appropriately cautionary effect
on those who would attempt to infer too much from these or similar data.

In summary, we have tested and applied a photometric calibration technique for the
POSS-II scan data which involves using plate overlaps to establish a zero point offset to an
instrumental standard. ‘Global’ CCD transformation functions are then applied to convert
instrumental J and F magnitudes to Gunn g and r, respectively, for all of the plates. Using
this procedure, it appears one may be able to achieve consistent and reliable photometry

over a large portion of the survey without unreasonably many CCD calibration sequences.
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In fact, provided a full side of a plate overlaps a well calibrated plate, our analysis indicate
that one can calibrate that plate using the overlap alone to within a zero-point uncertainty
of 0.05™ — 0.1™. To achieve a similar uncertainty for a single plate using CCD data alone
would require the equivalent of an order of three CCD fields per plate, as we have used
here. Because the plates may be accurately transformed to a uniform instrumental system
and, in turn, all their overlaps with CCDs combined to infer a single calibration curve, one
should be able to effectively pursue a strategy of obtaining only a few CCD sequences per

many plates, provided the plates are relatively contiguous.
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4 Comparisons with Other Surveys and Theoretical Mod-
els

In Figure 9 we plot our r-band counts against model predictions and measurements by
Picard (1991a) and Sebok (1986) from independent scans of Palomar Schmidt IIla- F plates.
The slope of our counts between 17.0™ < 7 < 20.0™ is 0.52 with a formal uncertainty of
0.01. The discrepancy between our measurements and others is fairly large for objects
brighter than 17™ and compared to Picard’s Northern counts, in particular. The latter
counts are from a survey of eight plates not more than 20 degrees from our own. We have no
explanation for this discrepancy, but note that the internal consistency of the counts among
plates within that survey is poor relative to ours, indicating either the effects of significant
physical variation in these fields or photometric zero-point or classification uncertainties. A
clearer understanding of the source of this inconsistency awaits the availability and analysis
of the same plates within DPOSS.

The model predictions in Figure 9 are those from the NE model by KGB discussed in
Section 1, a mild evolutionary version of the same (Koo, Gronwall, and Bruzual 1993b),
and a model closely approximating that by Guiderdoni and Rocca- Volmerange (GRV, 1990,
provided by Gronwall, priv. comm.). The KGB evolutionary model incorporates the same
spectral classes and LFs as the NE model, but with mild luminosity evolution of a subset
of the spectral classes according to the evolutionary tracks of Charlot and Bruzual (1991)
and Bruzual and Charlot (1993).

What is most surprising and illustrative in Figure 9 is the exceptionally high consistency
between the DPOSS counts and the KGB evolution and NE models. The predicted counts
were taken directly from their models without any renormalization or magnitude zero-point
adjustment. While the KGB models were constructed so as to fit the existing data, we
note that our results were not in their sample, and that previous bright measurements (viz.
Picard 1991a and Sebok 1986), given their dispersion, would not seem to have restricted
the models’ predictions to any precise level. We can infer that consistency with other

data sets, namely bright and faint counts in the same and different passbands, colors, and
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redshift distributions, significantly influenced the model predictions shown. Hence, in the
context of these models, the fact that our counts match the predicted counts so well is an
indication of the consistency of our measurements with these other, diverse data samples.

In contrast, a comparison of our counts with the GRV model indicates an increasingly
excessive number of galaxies relative to the NE hypothesis. We note that unlike the KGB
models, we did normalize the GRV model to our counts at r = 17™, as they had not been
previously scaled for consistency with any data. This model is an example of traditional
galaxy distribution synthesis models, which include a number of galaxy morphological
types, not color classes, and pre-defined Schechter LFs for each type. It is these models
to which previous researchers have compared their counts and postulated the existence of
excess galaxies at faint magnitudes.

In Figure 10 we plot the measured differential number counts in gy from this survey,
the APM southern survey of SERC/ESO plates, the predictions of no evolution models by
KGB, GRV, Ellis (1987), and the mild evolution model of KGB. The upper panel reflects a
conversion of the By magnitudes of all the non-DPOSS counts to g using the transformation
equation 2 from Windhorst et al. (1991) assuming a mean galaxy color (g — r) of 0.3™,
which we measure within the usable magnitude range of our survey. This transformation
roughly implies By ~ g + 0.5™. The lower panel is the result of horizontally shifting
all non-DPOSS counts until the DPOSS and APM counts are normalized at ¢ = 17.0™,
corresponding to a transformation of By ~ g + 0.7™. We note that any transformation we
apply is only very roughly approximate, as there is a significant color term implied by the
differences in the plate IIla-J, CCD g, and B; bandpasses. As a further indication, we
point out that in Bruzual (1992) the average galaxy color at low redshifts in his models is
(g—7r) ~ 0.5™, implying, according to Windhorst et al. (1991), By ~ g+0.6™. Accordingly,
we believe that the uncertainty in the magnitude zero-point of our counts relative to the
others is approximately 0.2™.

This uncertainty results in particular difficulty when trying to compare our color mea-
surements to those of the model. In Figure 11 we plot our (g — r) colors versus the trans-

formed KGB NE predictions for (By — Rr). The color transformation from the model’s
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(By ~ RF) to the data’s (g — ) system, which may be off by as much as 0.3™, is derived
by attempting to match actual star color distributions in the two systems.

Due to the zero point uncertainties in the blue counts, we are able to infer less from the
consistency of these preliminary g measurements with either theory or other data, awaiting
the production of model counts simultaneously in the B, and g passbands. However, we
note that the slope of our g counts between 17.0™ < g < 20.0™ is 0.49 with a formal
uncertainty of 0.01, in excellent agreement with the slope of the APM counts, 0.50 +
0.01, in the equivalent magnitude range. Again, we also find that in comparing both our
measurements and APM’s with the latest NE models, we find much closer agreement than
was found relative to older NE models (e.g., Maddox et al. 1990).

KGB explain some of the discrepancy between their NE model and traditional ones’
predictions as being due to the fact that these other models generally do not account for
the wide dispersion of galaxy colors within a galaxy morphological class; these traditional
models tend to over-predict red galaxies. Some previous models also assume a single LF for
each type, or luminosity functions for blue galaxies which tend not to even match the local
number density estimates. Although their NE model admittedly fails to sufficiently account
for all of the observations to which they try and fit (e.g., the model under-predicts faint
blue galaxy counts by ~ 40% by B; = 24™), it is nonetheless able to relatively consistently
predict counts over a sufficiently large magnitude range as to suggest that mild evolution
and proper accounting of the systematic errors in the data sets could account for the
remaining discrepancies, without the need for evolutionary or cosmological exotica. The
KGB evolution model plotted in Figures 9 and 10 reflect an early first attempt to include
some degree of evolution in their model, producing a marginally better fit to our data in

both colors, and more significant improvement at fainter levels (Gronwall priv. comm.).
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5 Discussion

We describe the first scientific results using the Digitized Second Palomar Observatory Sky
Survey. We have measured A(m) in two passbands from DPOSS galaxy catalogs derived
from an approximately 100 squared degree region centered near the North Galactic Pole.
The Illa-J and Illa- F' data were calibrated to the Gunn-Thuan ¢ and r CCD photometric
system using internal overlaps and overlaps with a set of CCD sequences distributed across
the plates. Our estimated zero point uncertainty for the combined set of four plates in each
band is ~ 0.05™ in r and ~ 0.10™ in g. The measured differential counts as a function
of magnitude, both in level and slope, are very consistent from plate to plate, helping to
confirm the consistency of our plate-to-CCD photometric calibration technique.

In both the blue and red passbands, our measured counts agree well with the no evolu-
tion predictions of KGB, and less so with comparable empirical measurements, especially
at brighter magnitudes. As in comparable previous surveys, we do not find good agreement
between our measurements and the predictions of traditional galaxy NE models. However,
in light of the most recent KGB models and our consistency with them, we believe these
initial DPOSS results provide additional empirical verification of the plausibility of their
hypothesis: that recent and/or extreme galaxy evolution or non-standard cosmology is not
demanded by the data at this time.

Further refinements of galaxy evolution models must include a detailed accounting of
the detection and measurement process in order to compare all the observations on a
consistent basis and provide a more conclusive comparison of model predictions with the
data. For example, as a note of caution, we refer to Figure 17, which demonstrates the
significant difference in measured differential number counts that result just from applying
different methods of photometry on the same data, in this case simulated images from
our survey. Although these detailed simulations suggest that systematic biases in our
measured galaxy counts are negligible within our catalog’s estimated 90% completeness
limit, we nonetheless fail to fully take into account, for example, the effect that different

distributions and forms of galaxy surface brightness profiles would have on observed counts.
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A fully comprehensive model might, for example, provide for a distribution of surface
brightness profiles as a function of galaxy spectral class. A particular survey’s surface
brightness detection and measurement thresholds might then be appropriately taken into
account when comparing model predictions to observations.

All of these caveats withstanding, we nonetheless consider the KGB model the relevant
null hypothesis for explaining our data, believing it to be the most consistent and compre-
hensively calibrated NE model produced to date. As we claim to have firm estimates of the
completeness and photometric accuracy of our results, the consistency (or lack thereof ) of
our observations with the model helps provide an additional check on whether mild galaxy
luminosity evolution remains a valid means of explaining the data. Gronwall (priv. comm.)
is currently in the process of re-optimizing the non-evolving LFs of the KGB model in the
context of our data, the results of which shall be forthcoming,.

As more DPOSS data, more accurate calibration, and the possibility of predicting
counts and colors in the g passband are achieved in the near future, we believe that one
will be able to place significantly more restrictive constraints on galaxy evolution models
at bright magnitudes. Far more difficult is the remaining task of coming to understand
and model the idiosyncratic systematics of each data set to which one should compare.
In this respect, the PNSC and DPOSS should prove to be far more amenable than many
other sources, due to the good statistics (tens of millions of galaxies), uniform quality,
and well-understood properties of the data. These initial results provide a glimpse of the

scientific potential of the full data set when it becomes available.
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A Appendix - Plate Photometric and Detection Sensitivi-
ties

In order to optimize the plate reduction procedure and understand its sensitivity to various
image characteristics, we created simulated images that matched the digitized plate scans as
accurately as possible. In particular, we wished to study detection efficiency, photometric
accuracy, and photometric consistency as a function of magnitude type, object profile,
isophotal threshold, image seeing, and image noise. While we had a choice of which type
of magnitude to measure (e.g., aperture or isophotal), the other characteristics are simply
observable, but variable. Through careful simulation, our hope was to better understand
the systematic effects in our DPOSS catalogs resulting from known variations in these

image qualities.
A.1 Simulation quality

Our plate image simulations were constructed using the ARTDATA package within IRAF.
The tasks GALLIST and STARLIST were used to construct a list of objects used to
populate a 20482 simulated footprint image. The random object lists were created assuming
a uniform spatial distribution and a power law luminosity function. We attempted to
match the quality and object density of plate J380, as it was as representative a plate from
the survey as any. For galaxies in the ¢ band apparent magnitude range 15™ to 19™, a
set of 60 galaxies with a power law slope of 0.35 (L o 10°%™) was found appropriate,
while 5200 objects with a power law slope of 0.6 (Euclidean) was used for the range 19™
to 23™. The galaxy profiles were all exponential disks with half-power radii uniformly
distributed between +50% and —50% of a canonical size for a given magnitude, specified
by a maximum of 15.0 arcseconds for the brighter sample and 2.90 for the fainter objects.
Each had random inclination, 7, ranging uniformly from 0° to 90°, with axial ratios given

by

a/b = /0.9 sin(i)? + 0.01.

An internal absorption coefficient was also applied based on the inclination (see the IRAF

ARTDATA/GALLIST documentation for details). A minimum redshift of 0.02 and 0.126
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was assigned to the bright end of each magnitude range. Within GALLIST, object red-
shifts are assumed to be proportional to the luminosity distance, or the square root of
the apparent luminosity, and are used to compute the mean apparent sizes of the galaxies
according to z/(1 + 2)2, the cosmological redshift factor for angular diameters.

The random star lists were constructed assuming a uniform spatial distribution and a
power law luminosity function with slope 0.2, which we found to provide the best fit to our
data. A total of 800 stars in the g magnitude range 15.0™ to 22.5™ were found to match
the measurements of plate J380.

Galaxy bulges and ellipticals were not included in these simulations. As their profiles
fall somewhere in between stars and exponentials, we nonetheless believe these simulations
sample the relevant extremes in the data. The fact that the exponential disks were con-
structed with randomly generated half-power radii also assures that the images sample a
distribution of different surface brightness profiles.

Noiseless images containing stars and galaxies were created using the MKOBJECT
task within ARTDATA. To simulate the effects of seeing, depending on the simulation, we

convolved the image with either a bivariate Gaussian:
URY)
() = expl~ In(2)( -7,
or Moffat (1969) function:
r
I(r) = [1+ (28 = 1)(Z )27,

where I is object intensity, r is the radial distance from the object center, 7, is the half-
intensity radius scale parameter, and 8 is the Moffat parameter, which we take to be 2.5.
As we show below, the choice of point spread function (PSF) form ultimately made very
little difference for our purposes. The hall-intensity radius of PSF we applied was 2.7
arcseconds, closely matching the width measured on plate J380.

Next we ran one of our own routines for adding noise to the image. The choice of
an appropriate noise level was complicated by the fact that the noise is correlated from

pixel to pixel in actual plate images. In the subsequent section, we describe how we used
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simulated images to determine how best to adjust our detection thresholds to compensate
for this correlation. We simulated this effect by adding signal dependent and independent
random Gaussian noise to the image before convolving it with a small blurring kernel. The
latter was achieved by running the IRAF task GAUSS on the noisy image using a pixelated
Gaussian distribution of standard deviation 0.51 pixels and sampled out to four standard
deviations. As a final step we crudely simulated the effects of saturation by cropping all
pixels values to some maximum level.

After numerous iterations of adjustments to the many parameters involved, we managed
to construct a set of simulated plate images that match the real data well. Figures 12
and 13 demonstrate that the ensemble distribution of object shapes and sizes in J380
and the simulated data are very closely matched. In particular, the scatter of objects is
quite similar, indicating consistent noise properties between the two. A further test of
the correspondence between the real and simulated data, especially at the noise level, is

depicted in a plot of number counts as a function of magnitude (Figure 14).
A.2 Effect of correlated pixel noise on detection

For optimal sensitivity, the FOCAS detection algorithm applies a threshold equal to some
number of estimated standard deviations (sky sigma) above the locally estimated sky.
SKICAT provides FOCAS with a robust value for the sky sigma, individually derived
from statistics for each footprint. However, because of spatially varying pixel-to-pixel
correlation within each plate scan, using the same multiple of sky sigma as the threshold
for all footprints would not result in the same detection sensitivity.

To compensate for this effect and approach a common level of sensitivity between and
within plates, we sought to derive a factor by which to scale the measured sky sigma so as
to make it correspond to approximately one standard deviation in an unblurred version of
each footprint. To establish this scaling factor as a function of measured blur, we used one

of our simulated footprint images matching the average noise! and object number statistics

!The appropriate level of uncorrelated, Gaussian random noise was determined in an iterative fashion.
First, we found a Gaussian kernel which, when convolved with the image, produced a degree of blur, as
measured by the pixel-to-pixel correlation, closely approximating that of an average footprint. We then
found that noise amplitude which, after convolution, resulted in a measured sky sigma closely matching
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of real footprints, then we convolved it with a series of Gaussians of different width. Given
the convolution kernel, the appropriate scale factor is simply the square root of the inverse
of the sum of squares of the normalized kernel elements. By measuring the pixel-to-pixel
R? for each image, we are able to empirically derive a mapping from measured (square)
correlation to scale factor. We found a sixth order polynomial to provide a good fit to
the relation. We also established the relation using a blank simulated sky image and
derived virtually identical results, lending confidence in the robustness and accuracy of
our correlation estimation procedure.

We chose 2.5 times this scale factor times the estimated sky sigma as our detection
threshold in plate instrumental intensity units. We also required every object to comprise
at least six contiguous pixels. We used the built-in FOCAS pre-detection blurring function,
which is simply a five by five array of linearly increasing weights from each edge to the
center. The FOCAS detection algorithm works by convolving the image with this kernel,
then searching for contiguous pixels with values greater than the locally estimated sky by
the specified detection threshold. To adjust for the convolution, which is meant to improve
the sensitivity of the detection algorithm, the detection threshold is scaled by the square
root of the inverse of the sum of squares of the normalized kernel elements. Note this is
the same blurring correction we applied earlier to account for the correlation induced by
the scanning process.

Our choice of detection parameters, in particular our scaling correction for pixel-to-
pixel correlations, results in relatively consistent sensitivity as a function of plate quality, as
evidenced by the relative uniformity of object density we detect from footprint to footprint
and plate to plate. Our choice of threshold, minimum area, and pre-detection blurring were
chosen after extensive tests on both real and simulated images, establishing some feel for
the trade-off between completion (percentage of real objects detected) and contamination
(percent of detected objects which are not real). On simulated images, this combination
of parameters resulted in an average FOCAS detection isophote corresponding to roughly

2.0 times the uncorrelated sky sigma, which is sufficiently far into the noise as to pick up

that of an average footprint.
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every object readily detectable by eye. It also resulted in what we considered a manageable
number of detections per footprint and plate, in excess of the density saved in previous

Schmidt plate surveys.
A.3 Sensitivity to magnitude type and sky subtraction

The next set of tests using the simulated images were to determine what type of mag-
nitude provides the most reliable estimate of true star and galaxy magnitudes for our
data. The four types we tested were aperture magnitudes, using a 10 arcsecond diame-
ter; isophotal magnitudes, measured using an isophote approximately 2.0 (uncorrelated)
sigma above the local sky; FOCAS total magnitudes, measured by growing the isophote
out until it encompasses twice the isophotal area used in the detection process; and Gaus-
sian ‘corrected’ magnitudes of the sort used in the APM survey (Maddox, Efstathiou, and
Sutherland 1990). The latter correspond to total integrated magnitudes assuming a Gaus-
sian profile fit to each galaxy. Given a measured threshold intensity, t, isophotal area, A,
and isophotal magnitude, m, Maddox, Efstathiou, and Sutherland (1990) show that the
difference between total and isophotal magnitudes can be given by a parameter ¢, where
Myor = M + 2.5logo(1 + €) and

At 1

A quadratic approximation may be applied to invert this expression and solve for ¢ as a
function of A, m, and t. The error introduced by this approximation is negligible. Maddox,
Efstathiou, and Sutherland (1990) use this type of magnitude to attempt to remove the
effect of plate-to-plate variations in their isophotal magnitudes due to varying threshold
isophotes. They justify the use of Gaussian profiles based on the fact that the underlying
true profiles of faint galaxies are blurred by seeing into approximately Gaussian form.
Bright objects, on the other hand, have a small correction factor, so the profile assumption
is not important.

We measured and computed these different types of magnitudes for every galaxy de-
tected in our simulated footprint data. Plots of true minus measured magnitude as a

function of true magnitude and magnitude type appear in Figure 15. As we expect, the
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aperture magnitudes tend not to measure all of the flux of brighter, hence generally larger,
galaxies, although they provide less biased estimates at fainter levels. The isophotal mag-
nitudes are also systematically biased too faint, simply due to the use of an isophotal
threshold. FOCAS total magnitudes, on the other hand, seem to provide a reasonably un-
biased estimate of actual magnitudes as a result of extending the measurement threshold
in a profile-dependent way. The Gaussian total magnitudes derived from correcting the
isophotal magnitudes, however, systematically overcompensate for the thresholding effect,
resulting in magnitudes severely biased in the direction of being too bright.

In Figure 16 we plot the average and standard deviation in one magnitude bins of the
difference between true and measured magnitudes for isophotal, FOCAS, and Gaussian
total magnitudes, measured for both stars and galaxies in our simulations. Note that by
a true ¢ magnitude of 20.5™, the Gaussian total magnitudes of galaxies have the smallest
scatter, but are systematically bright by nearly 0.3™. Isophotal magnitudes are biased by
approximately 0.1™, but in the opposite direction. For both stars and galaxies, the FOCAS
total magnitudes have the least bias across the fainter and more relevant magnitude ranges.
Hence, we choose to use FOCAS total magnitudes when analyzing the photometry from
DPOSS.

To further test the scientific relevance of the choice of magnitude type, we computed
the differential galaxy counts measured from our simulated data using each of the different
magnitude types. We plot these results in Figure 17. The solid line indicates the true
number of objects used to create the data. Note that using both the isophotal and FOCAS
total magnitudes result in measurements that trace the actual counts fairly well out to a
magnitude of approximately 20.5™ in g. Due to the bias in the Gaussian total magnitudes
we computed, however, those number counts are significantly inflated above truth at faint
levels. A large number of faint objects are artificially shoved to the left, boosting the
counts of objects in the range 19.5™ < g < 21.0™. We are unable to assert that an effect
of just this sort helps account at least in part for the excess counts observed by the APM
group in their survey (Maddox et al. 1990), as we have not attempted to simulate and

explore these effects using their data (which consist, e.g., of photographic densities and
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not fitted intensities). Nonetheless, after performing these tests, we were convinced of the
merit of using FOCAS and not Gaussian total magnitudes for our survey.

In addition to magnitude type, quality of sky subtraction is one of the most determining
factors of accurate photometry. In this capacity, we found the FOCAS sky estimation
routine to perform superbly. In Figure 18 we plot the mean and standard deviation of
the error in the measured sky intensity of the simulated data as a function of magnitude,
in units of the image’s (uncorrelated) sky noise sigma. Note that the mean sky error
is well below a tenth of the sky sigma, and after accounting for average object areas,
results in an average magnitude error well under 0.01™ down to a g of 20™, rising only to
0.02™ by g = 22™. To verify that our simulated data matched the real data well enough
to make this test relevant, we compared the measured sky values in our simulated data
with measurements from plate J380 (Figure 19). Just as in Figures 12 through 14, we
found excellent agreement between the two distributions. Note, however, that we have not
simulated the effects on sky subtraction of crowding of the sort expected at low Galactic
latitudes, where more specialized techniques will be required. Our simulations only verify
that the FOCAS local sky estimation routine performs quite well for images such as those

in high latitude DPOSS fields.
A.4 Sensitivity to detection threshold, seeing, and noise

The primary reason for using something like a Gaussian corrected magnitude is to help
remove the effect of expected image variations, such as in the surface brightness of mea-
surement thresholds. Ideally, of course, one would like to use the same surface brightness
threshold, in terms of calibrated magnitudes per square arcsecond, when measuring all
plates. This presents the quandary, however, of knowing the photometric calibration of
the plate prior to it ever being reduced. In the end, one must just choose a consistent means
for determining the isophotes, and afterwards try to account for the resulting variations
in the actual levels. We sought to quantify how well FOCAS total magnitudes hold up
to these sorts of varying plate effects, as well as determine the sensitivity of our detection

method to these variations.
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We found that detection efficiency and measured FOCAS total magnitudes vary in
an expected manner as a function of detection and measurement threshold, seeing, and
noise. These variations are at the level expected due to noise considerations, and they are
generally not too significant until ¢ > 21.4™. These results are illustrated in Figures 20
through 25. These figures demonstrate the effect of varying each factor (threshold, seeing,
and noise) by an amount at the limit of what is expected (or found to date) in the actual
survey. For each factor, we plot the detection efficiency and measured magnitude error
(the offset relative to the truth) for stars and galaxies as a function of that factor (Figures
20, 22, and 24). We also plot the consistency of measured magnitudes from image to image
assuming different levels of that factor (Figures 21, 23, and 25).

Of particular note is the consistency of stellar and galaxy magnitudes as a function of
different isophotal thresholds out to reasonably faint magnitudes. We find that out to a
g magnitude of 20.5™, the average offset due to a threshold difference of 0.2™ is less than
0.025™, which is well within the systematic offset we actually measure from plate to plate.
This means that varying thresholds are not the principal contributor to plate-to-plate
variations in zero points in our data, but rather these variations are more likely due to a
composite of many factors, including seeing, plate sensitivity variations, as well as thresh-
olds. This justifies our choice of using FOCAS total magnitudes as opposed to Gaussian
magnitudes, which are meant to explicitly remove the effects of varying thresholds. We
found that the consistency of Gaussian magnitudes is, in fact, better out to fainter magni-
tudes. However, this consistency is achieved at the cost of significant bias in the measured
magnitudes, as demonstrated in Figure 15. We believe the error we would introduce in
attempting to remove this bias, which is very difficult to measure for real data, would far
exceed the error and inconsistency resulting from using FOCAS total magnitudes, so we
do not attempt it.

Our tests also indicate that different levels of seeing have moderate effects on detection
efficiency for both stars and galaxies, though the effects on absolute and relative magnitudes
are much more pronounced for stars than galaxies. Varying the seeing width from 3.0” to

3.6” results in a relative stellar magnitude offset of about 0.07™ by g = 20.5™, while it is
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less that 0.03™ for galaxies. Changing the shape of the PSF from a Gaussian to a Moffat
profile of the same width has virtually no effect on the measured galaxy magnitudes, but
has an effect on the order of 0.05™ for stellar magnitudes out to a g of 20.25™.

Different realizations of noise at the same and higher levels have little effect on detection
efficiency and magnitudes out to the plate classification limit. The false detection rate, or
catalog contamination, however, rises dramatically at the faint end with just a 20% increase
in noise level. This observation helped motivate our choice of a noise-dependent, rather
than constant surface brightness, detection and measurement threshold, helping to keep
catalog contamination at a reasonably constant level. Using a constant surface brightness
threshold would require knowledge of a plate’s photometric calibration before processing it,
which is rather difficult to achieve. In any case, because of the variability in pixel-to-pixel
noise correlation we measured within plates, we were largely limited for practical reasons
to using the scaled-number-of-sigma-above-sky threshold described in detail in Section A.2
above. Our attempts at using a constant surface brightness threshold resulted in catalogs
of such variable depth and contamination, as a result of varying noise correlation, as to
render them useless. Instead we chose to live with varying threshold isophotes, verifying
through these simulations that the systematic effects on magnitudes are within acceptable
limits.

In summary, systematic galaxy magnitude offsets due to expected variations in thresh-
old isophote, image seeing, and noise appear to be below 0.05™ down to our classified
galaxy 90% completeness limit of ~ 20.25™ in g. The effects of these factors on detec-
tion efficiency and catalog contamination qualitatively meet our expectations, and have
virtually no affect on catalogs out to the classification limit. Expected variations in image

seeing and noise do play major roles in determining the plate detection limit, however.
A.5 Object profile sensitivity

We also performed a limited number of tests to determine the sensitivity of FOCAS de-
tection and total magnitudes to galaxy profile. As our simulated images were created

only using exponential disks, we were unable to test the sensitivity to an exhaustive set
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of profiles. The galaxy parameters we tested against were axial ratio (a/b) and normal-
ized half-light radius at a given magnitude (Tporm ), Which varied from —50% to +50% in
our simulations. Figure 26 indicates that there are no significant systematic variations as
a function of these galaxy shape parameters out to magnitudes of interest. Differences
in these parameters do affect the accuracy of faint magnitudes for large values of both
quantities, however (see Figure 27). These would be galaxies with relatively flat profiles.
This figure plots galaxies with true magnitude less than or equal to 22.0™ in g. Out to
our galaxy catalog completeness limit of 20.25™, the average offset is only about 0.2™.
Nonetheless, the sensitivity of DPOSS galaxy photometry to variations in object profile is

a subject which should demand careful attention in the future.
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B Appendix - Photometric Calibration

B.1 Instrumental plate-to-plate calibration

The initial step in establishing a uniform magnitude system for all of our survey plates was
to compile a list of all objects detected and classified as a galaxy within pairs of adjoining
plates. We limited the list to objects detected within 2.9° of the center of each overlapping
plate, insuring that the photometry would be minimally affected by vignetting effects.
Figure 28 plots the difference in instrumental magnitude as a function of mean magnitude
for the galaxies in the overlap between F380 and F381. When performing the density to
intensity transformation before processing each plate, we attempt to scale the average sky
value of each plate to the same level so that the instrumental magnitudes for each plate
tend to be quite close. They are also scaled to roughly match their calibrated values within
a magnitude or two. Note that for F;,5; > 15.0™, the difference in magnitudes between
plates appears to consist almost exclusively of a DC offset term, with no higher polynomial
terms obviously necessary to express the relation. The same holds true for the other plate
overlaps measured in this study, including J band overlaps, as will be quantified below.
The simple, zero order nature of this relation implies that for unsaturated galaxies, our
method of linearizing the plate densities is consistent from plate to plate, and our choice of
isophote and magnitude type are consistent from plate to plate. It also demonstrates the
relatively high photometric uniformity within the plates resulting nitrogen flushing during
each exposure.

A simple test to verify the adequacy of a simple zeroth order offset between plates is
to measure their consistency for a mutually overlapping ring of three or more plates. In
our survey, three such fields (380, 381, and 442) were available for both F and J. To obtain
a statistically meaningful number of objects in the 380/442 overlap, we had to relax the
radial distance restriction to 3.1°. Otherwise, the lists of overlap objects were generated
exactly as described above.

For each band, we measured the average magnitude offset between each of the three

catalog pairs. We restricted the estimate to within the mean magnitude range of 16™ to 19™
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for Finst and 16™ to 20™ for J;ns:. We then solved for the least-squares best fit zero point
offsets between field 380, our chosen standard, and fields 381 and 442. We used the three
pairwise estimated offsets as our measurements and the three plate closure requirement
as a constraint. The original pairwise offsets and those obtained after subtracting our
least-squares fits appear in Table 4. The mean offset between fitted pairs in the magnitude
ranges quoted above is less than 0.01™ in both colors, with a standard error of 0.018™ in
Finee and 0.036™ in J;ps¢.

Given the high degree of consistency resulting from this matching procedure, we applied
these fitted offsets, transforming all magnitudes to the field 380 instrumental standard. For

field 382, which does not overlap 380, we simply offset relative to the fitted field 381.
B.2 Absolute calibration using CCD data

In our final stage of calibration, we combined matching CCD and plate measurements from
all four plates in order to establish the plate-to-CCD photometric calibration curves. We
did so by fitting zero, first, and third order polynomials to the lists of J and F magnitudes
(in the instrumental field 380 system) vs. calibrated Gunn g and r magnitudes, respectively.
Once again, we restricted the lists to objects with a maximum distance from a plate center
of 2.9°. The fitted data points and their residuals after applying the linear calibration
transformation appear in Figures 29 through 32. The calibration accuracy on a per plate
basis is also reflected in Table 5, while the averages across all plates appear in Table 6.

Our empirical estimates of the uncertainties in the linear transformation offsets, based
on independent calibrations of each plate, are approximately 0.025™ in r and 0.05™ in g,
though the formal uncertainties are about a factor of two smaller. The empirically-derived
uncertainty in the slope of the transformations is approximately 0.015 for both g and r,
dominating the calibration uncertainty in net effect after adjusting the offset to achieve an
optimal fit using the different slope. We explicitly test for the effect of this uncertainty on
our measured counts in section 3.2,

Our choice of a linear plate-to-CCD magnitude transformation was largely driven by

our presumption that most nonlinearities in the faint magnitude ranges of interest should
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have been taken into account by our fit to the IID curve, as described in Section 1. We
suspected that any attempt to account for additional nonlinearity might involve fitting
into the noise. This suspicion was largely confirmed by plots of stellar color-magnitude
diagrams as a function of which transformation we applied (see Figure 33). Note that the
two distinctive stellar ridges display a high degree of nonlinearity when one applies the
cubic transformation. As this result is in contradiction with the expected distributions
within color-magnitude diagrams for galaxies, we chose to remove the cubic polynomial
from consideration. Instead, we chose to apply the linear transformation for both g and
7, as it resulted in a marginally better fit than the zero point offset and still a reasonable
stellar color-magnitude diagram.

As our error analysis in Tables 5 and 6 reveals, after the initial zero point adjustment
is applied to each plate, a single transformation function converting instrumental to cal-
ibrated magnitudes applies consistently well across multiple plates, with standard zero
point errors relative to CCD photometry of less than 0.05 magnitudes in 7 and 0.10 in g.
We note, however, that this calibration process is only valid for the portion of each plate
not significantly affected by vignetting. DeCarvalho (1994, priv. comm.) is in the process
of mapping out the POSS-II vignetting function using a large sample of DPOSS scans,

which should allow us to extend the area of each plate suitable for photometry.
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Figure 1: The initial set of DPOSS survey fields, analyzed in this paper. The dashed
lines centered on each field outline the portion of the plate not suffering significantly from
vignetting effects. The small labels within each field prefaced by an ‘A’ or ‘F’ designate
the location of CCD sequences centered upon Abell clusters or random fields, respectively.
The North Galactic Pole is indicated by a large dot in the lower middle of the plot.

Figure 2: The parametric form in Equation 1 is used to approximate the transforma-
tion function from the measured densities of the 16 plate sensitometry spots to relative
intensities.

Figure 3: The accuracy of our star/galaxy separation technique is depicted by the complete-
ness (fraction of galaxies classified as such) and contamination (fraction of non-galaxies
classified as galaxies) measured within galaxy catalogs from four survey plates, using in-
dependent CCD sequences as the source of true classifications.

Figure 4: The relative transmission of the IlTa-J, Illa-F, and IV-N plate plus filter com-
binations and the Gunn-Thuan g, r, and 7 system. The filter tracings were provided by S.
Djorgovski and J. Smith (priv. comm.).

Figure 5: The difference in calibrated r magnitude vs. average magnitude for galaxies in
the overlaps between four plate fields.
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Figure 6: The difference in calibrated ¢ magnitude vs. average magnitude for galaxies in
the overlaps between four plate fields.

Figure 7: r and ¢ band galaxy counts in our four fields. The sharp fall-offs at the faint
end are due to truncation of the catalog, by construction, beyond the reliable classification
limit, rather than the intrinsic plate detection limit.

Figure 8: Galaxy counts as a function of the plate-to-CCD transformation function. The
thick solid line in each graph reflects the differential number counts resulting from our stan-
dard linear calibration of the plate magnitudes to the Gunn-Thuan standard. The dotted
lines surrounding them reflect the counts derived by altering the slope of the transformation
by one standard deviation. The dashed and dashed-dotted lines are the counts resulting
from the application of best-fitting zeroth and third order transformations, respectively.

Figure 9: The measured differential number counts from this survey (solid line, with
dots extending beyond the 90% completeness / 10% contamination limit), Picard’s (1991)
survey of POSS-II plates in the North and South Galactic Caps, and Sebok’s (1986) survey
of earlier-generation Palomar Schmidt plates. The other lines are the predictions of no
evolution models by Koo, Gronwall, and Bruzual (KGB 1993a) and Guiderdoni and Rocca-
Volmerange (GRV 1990), and the mild evolution model of Koo, Gronwall, and Bruzual
(KGB 1993b).

Figure 10: The measured differential number counts from this survey (solid to dotted
line) and the APM (Maddox et al. 1990) southern survey of SERC/ESO plates. The
other lines are the predictions of no evolution models by KGB, GRV, and Ellis (1987),
and the mild evolution model of Koo, Gronwall, and Bruzual (1993b). The upper panel
reflects a conversion of the By magnitudes of all the non-DPOSS counts to g using the
transformation in equation 2 from Windhorst et al. (1991) assuming a mean (g — r) of
0.3™, as measured in our data. The lower panel is the result of horizontally shifting all
non-DPOSS counts until the DPOSS and APM counts are normalized at g = 17.0™.

Figure 11: The distribution of galaxy colors in three magnitude intervals in g. The his-
tograms are from the four DPOSS fields in our survey. The solid line is the no evolution
model prediction of KGB. The color transformation from the model’s (B; — RFr) to the
data’s (g — r) system, which is approximate and may be off by as much as 0.3™, is derived
from matching star color distributions in the two photometric systems.
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Figure 12: A comparison of measured object areas as a function of FOCAS total magnitude
for our simulated plate image vs. a section of the scanned plate J380.

Figure 13: A comparison of measured object intensity weighted first moment radii as a
function of FOCAS total magnitude for our simulated plate image vs. a section of the
scanned plate J380.

Figure 14: A comparison of the number of objects detected in each of nine magnitude bins
for our simulated plate image vs. two different sections of the scanned plate J380. One
section was taken from the center of the plate, the other from the top.

Figure 15: The true minus measured magnitude as a function of true g magnitude as a
function of true magnitude and measured magnitude type. The solid lines connect average
values in one magnitude bins.

Figure 16: The average and standard deviation in one magnitude bins of the difference
between the true and measured magnitudes as a function of magnitude type.

Figure 17: Differential galaxy counts measured from our simulated data using three dif-
ferent magnitude types. The solid line indicates the actual number of objects used to
construct the data.

Figure 18: The sky measurement error, and standard deviation thereof, of the simulated
plate data as a function of FOCAS total magnitude in units of the image’s sky pixel-to-
pixel sigma prior to pixel blurring. The resulting magnitude errors are negligible (< 0.01™)
below g = 20™.
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Figure 19: A comparison of measured sky values (in arbitrary intensity units) as a function
of FOCAS total magnitude for our simulated plate image vs. a section of the scanned plate
J380.

Figure 20: The effect of varying the isophotal threshold on detection efficiency and mag-
nitude accuracy.

Figure 21: The average magnitude offset for stars and galaxies measured using different
isophotal thresholds.

Figure 22: The effect of varying the seeing shape and width on detection efficiency and
magnitude accuracy.

Figure 23: The average magnitude offset for stars and galaxies measured on images with
varying seeing shapes and widths.

Figure 24: The effect of using the same image but different noise realizations, one of the
same level, another 20% higher, on detection efficiency and magnitude accuracy.

Figure 25: The average magnitude offset for stars and galaxies measured on images with
different noise.

Figure 26: Detection efficiency as a function of galaxy shape as measured by the normalized
half-light radius, rporm, and axial ratio, a/b.

Figure 27: The accuracy of measured magnitudes as a function of the same galaxy shape
parameters as in Figure 26 out to a true magnitude of 22.0™.

Figure 28: The difference in instrumental F magnitude as a function of mean magnitude
for the galaxies in the overlap between F380 and F381. The dashed line at a difference
of 0.276™ indicates the offset we obtain from a simultaneous least squares optimization of
the offsets between 380, F381, and 442 in the magnitude range 15™ < Fyn5 < 19™.



Figure 29: We fit zero, first, and third order polynomials to measured plate and CCD red
magnitudes from a combined list of objects in the four indicated plate fields. We chose the
linear calibration for its theoretical appeal and because it produced the most reasonable
stellar color-magnitude diagrams.

Figure 30: We fit zero, first, and third order polynomials to measured plate and CCD blue
magnitudes from a combined list of objects in the four indicated plate fields. As for r, we
chose to use the linear calibration.

Figure 31: The differences between measured plate and CCD magnitudes of galaxies after
calibrating the instrumental plate magnitudes to the r system.

Figure 32: The differences between measured plate and CCD magnitudes of galaxies after
calibrating the instrumental plate magnitudes to the g system.

Figure 33: The g; — rr color of stars vs. rg magnitude in Field 380 for three different
methods of plate to CCD magnitude calibration. Note that the two stellar ridges take
their expected linear form only in the case of zeroth and first order (offset and linear,
respectively) transformations.
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Field Plate RA (1950) Dec Dens Exp (mins) Trans Grade mnm
J380 1744 12724™ 35° 1.48 80 Hazy A 21.81
F380 3847 12h24m 35° 1.51 100 Cloud B 21.39
J381 3116 12748™ 35° 1.56 60 Clear B 21.81
F381 2353 12k48™ 35° 1.22 90 Clear B 21.12
J382 1790 13%12™ 35° 1.13 65 Clear A 21.81
F382 2268 13h12m 35° 1.28 90 Clear A 21.39
J442 3131 12h39™ 30° 1.87 75 Clear A 21.81
F442 3068 12h39™ 30° 1.28 75 Cloud B 21.12

Table 1: Plate number, center location, approximate photographic sky density, exposure
time, sky transmission quality, grade, and approximate limiting magnitude of the survey
plates in our four field region.



150<r<«<19.0 15.0<r < 20.0 145 < g < 19.5 14.5 < g < 20.5
Plates || Moffset OO0ffset | MOffset TOffset || MOffset  TOffset | MOffset  TOf fset
380/381 0.031 0.172 0.019 0.241 0.035 0.373 0.024 0.345
380/442 -0.009 0.166 -0.015 0.225 -0.055 0.201 -0.032 0.327
381/382 -0.056 0.173 -0.001 0.256 0.004 0.160 0.002 0.252
381/442 0.022 0.324 0.008 0.306 0.046 0.534 0.026 0.412

Table 2: Average offsets and standard deviations between calibrated g and r magnitudes
within four plate overlap regions in two magnitude ranges.




Magnit]-lde MOffset MOffset OTOffset
range mean sigma mean
150 < r < 19.0 -0.003 0.039 0.209
150 < r < 20.0 0.003 0.014 0.257
145 < g < 19.5 0.008 0.045 0.317
14.5< 9 < 20.5 0.005 0.027 0.334

Table 3: Average offsets and standard deviations between calibrated ¢ and r plate magni-
tudes across four field overlaps in two magnitude ranges. The offset means and sigmas are

computed using the overlap 7 measurements listed in Table 2. The mean 00 ffset Values
are derived from the ¢ measurements from the same table.
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A Finst
Plates Original Fitted
380- 381 0.289 + 0.227| 0.019 £ 0.208
380 - 442 | 0.131 + 0.201-0.012 £ 0.197
380-3811-0.119 + 0.283| 0.009 £+ 0.280
A Jinst
Plates Original Fitted
380-381 | 0.198 £+ 0.342] 0.021 £ 0.342
380 - 442 [ -0.039 + 0.311]-0.026 £ 0.311
380-381( 0.160 + 0.406| 0.024 £ 0.407

Table 4: The mean and standard deviation of the measured difference in instrumental
magnitudes of galaxies in the indicated plate overlaps, before and after applying fitted

plate offsets. The measurements were obtained over the magnitude range 15™ < Fi, 4,
< 19™ and 16™ < Jinge < 20™.
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150<r<19.0 150 < r < 20.0 14.5 < g < 19.5 14.5 < g < 20.5
Plate || Mofrsct  00ffset | TOffset TOffset || MOffset O0ffset | MOffset OOf fset
380 0.039 0.237 0.049 0.218 0.008 0.192 -0.043 0.273
381 -0.034 0.159 0.018 0.196 0.042 0.194 0.022 0.223
382 0.027 0.129 0.034 0.168 0.084 0.336 0.071 0.286
442 -0.021 0.195 -0.042 0.230 -0.106 0.320 -0.144 0.385

Table 5: Average offsets and standard deviations between calibrated plate magnitudes

and corresponding CCD magnitudes in ¢ and r for fields 380, 381, 382, and 442 in two
magnitude ranges.



MagnitUde RO f set TNOffset OOffset
range mean sigma mean
15.0 < 7 < 19.0 0.003 0.036 0.180
15.0 < 7 < 20.0 0.015 0.040 0.203
14.5< g <195 0.007 0.081 0.261
14.5 < g < 20.5 -0.024 0.093 0.292

Table 6: Average offsets and standard deviations between calibrated plate magnitudes and
corresponding CCD magnitudes in g and r across four fields in two magnitude ranges. The
offset means and sigmas are computed using the plate by plate 7 measurements listed in

Table 5. The mean o¢yyss.¢ values are derived from the o measurements from the same
table.
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